Edexcel Maths M2
 Mark Scheme Pack

$$
2001-2013
$$

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
JANE 2001

Advanced Supplementary/Advanced Level

General Certificate of Education
Subject MECHANICS 6678
Paper No. M2

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
JHATE: 2001
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject MECHANICS 6.678
Paper No. M^{2}

Question number	Scheme Marks
3.	[Wherever \leq or \geq used in scheme, can be replaced by =] $\left.\Rightarrow(a+5 x) \stackrel{f}{\operatorname{A}} \mathbf{\operatorname { t a n } 3 0 ^ { \circ } \leq 6 a , \quad x \leq \frac { (6 \sqrt { 3 } - 1) a } { 5 } \Rightarrow k = \frac { (6 \sqrt { 3 } - 1) } { 5 } \text { or } 1 . 8 8} \text { or } 1.9\right\}$ [Alternatives: $\mathrm{M}(B): \mathrm{R} 2 \mathrm{a} \sin 30^{\circ}=\mathrm{F} 2 \mathrm{a} \cos 30^{\circ}+\mathrm{mga} \sin 30^{\circ}+5 \mathrm{mgdsin} 30^{\circ} \mathrm{M} 1 \mathrm{AlA} 1$ $\mathrm{d}=2 \mathrm{a}-\mathrm{x} \mathrm{B1} ;$ " $\mathrm{F} \leq 0.5 \mathrm{R} " \Rightarrow \mathrm{~F} \leq 3 \mathrm{mg} \mathrm{M} 1$, rest as scheme. $M \text { (centre) : Ra } \sin 30^{\circ}+5 m g(x-a) \sin 30^{\circ}=(F+S) a \cos 30^{\circ} ; S \leq 3 m g \text { etc. }$ Mark as scheme.] [Note (i): MR - 30° to the ground - gives $k=\frac{(6-\sqrt{3})}{5}$ or 0.493 (ii) The same answer is obtained if only error is \sin / \cos confusion; both score $7 / 9$. (iii) m used for mg throughout, no penalty; inconsistent, as scheme but max -2]
4.	(a) Impulse $=$ change in momentum $3.5 \mathrm{i}+3 \mathrm{j}=0.1[(10 \mathrm{i}+25 \mathrm{j})-(\mathrm{u} \mathrm{i}+\mathrm{vj})]$ M1A1 Answer: $\mathrm{ui}+\mathrm{vj}=(-25 \mathbf{i}-5 \mathbf{j}) \mathrm{ms}^{-1}$ (b) Complete method to find height s above hit position Correct equation in s only: $0=625-2(9.8) s ; s=25(25 / \mathrm{g})-\frac{1}{2} \mathrm{~g}(25 / \mathrm{g})^{2} \quad$ A1 Answer: $\mathbf{3 2 . 9 \mathrm { m }}$ or 33 m (c) Method for total time: $0=25 \mathrm{t}-4.9 \mathrm{t}^{2} \Rightarrow \mathrm{t}=5.10 \mathrm{~s}$ or "half time" $0=25-9.8 t^{\prime} \Rightarrow t^{\prime}=2.55 \mathrm{~s}$ Horizontal distance $=10 \times t=51 \mathrm{~m}\left[J\right.$ for $\left.10 t \propto 20 t^{1}\right]$ [Notes: If \mathbf{i} and \mathbf{j} interchanged, then can score Ms in (b) and (c); allow $\sqrt{ }$ for $25 \times 2.04=51$. [Use of answer in (a) can score M marks in (b)(c) only [Use of $\frac{\mathrm{V}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}$ and $\mathrm{V}^{2} \frac{\sin 2 \theta}{\mathrm{~g}}:$ M1 method for V or $\theta, \mathrm{A} 1$ both correct for first two marks]

Stewart House 32 Russell Square London WC1B 5DN
J.ANE 200才

Advanced Supplementary/Advanced Level

General Certificate of Education

Question number	Scheme Marks
5.	(a) Using work/energy equation: (i) P.E. $= \pm 0.5 \mathrm{gh},= \pm \mathrm{g} \sin 20^{\circ}$; (ii) $\mathrm{K} . \mathrm{E} .=\frac{1}{2} \times 0.5 \times 25$ M1,A1;B1 $\frac{1}{2} \times 0.5 \times 25=0.5 \mathrm{gh}+2 \mathrm{R}$ Solving for $R ; R=1.45$ or 1.4 [Note: $2\left(\mathrm{R}+0.5 \times 9.8 \times \sin 20^{\circ}\right)=\frac{1}{2}(0.5) 25$ scores first 5 marks, mark as scheme] Alternative method: Speed equation for a: $0=25 \pm 2 \mathrm{a}(2) \quad(\mathrm{a}= \pm 6.25)$ M1A1 Equation of motion: $\left(R+0.5 \times 9.8 \times \sin 20^{\circ}\right)= \pm 0.5 \mathrm{a}$ Totally correct equation: $-\left(\mathrm{R}+0.5 \times 9.8 \times \sin 20^{\circ}\right)=0.5 \mathrm{a}_{\mathrm{c}}{ }^{\mathrm{a}}{ }^{\mathrm{a}-\mathrm{ve}}$ $\therefore \quad \therefore$ Solving for R (b) Complete method for s [Work/energy equation: $\frac{1}{2} \times 0.5 \times 25=\mathrm{sR}+0.5 \times 9.8 \times \mathrm{s} \sin 40^{\circ}$ or $\quad-\left(\mathrm{R}+0.5 \mathrm{~g} \sin 40^{\circ}\right)=0.5 \mathrm{a}(\mathrm{a}=-9.2)$ and $\left.0=25+2 \mathrm{as} \quad\right]$ Answer: $s=1.36 \mathrm{~m} \subset 1.4 \mathrm{~m}$
6.	

Stewart House 32 Russell Square London WC1B 5DN
5 UNJE 200:
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject MECHANICS 6-678
Paper No. M. 2.

EDEKSIEI d ITOUSNDDATION

Stewart House 32 Russell Square London WC1B 5DN .
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject MECHANICS 6678
Paper No. M2

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject MECHANICS 6678
Paper No.

Question number	Scheme	Marks
4	(a) $\begin{array}{ccc} & A B C & W \times Y Z \\ \text { mass ratio Temdate } \\ \text { C.M. } & 48 a^{2} & 4 a^{2} ; 44 a^{2} \\ 3 & \frac{8 a}{3} & \bar{x} \end{array}$ $M(A B) \quad 44 a^{2} x+8 a^{3}=48 a^{2} \times \frac{8 a}{3}$ solveng to $\vec{x}=\frac{30}{11} a *$ (b) $\begin{array}{lll} \text { (b) } & \begin{array}{ll} M(A B) \end{array} & \begin{array}{ll} M(Z Y) \\ K M \times 8 a+M \times \frac{30}{11} a & =M(1+K) 3 a \end{array} \\ K M \times 5 a & =M\left(3 a-\frac{30}{11} a\right) \end{array}$	$B I ; B I N$ $B I B I$ $H I A I$ $A I$ HI $A 2(1,0)$ $A I$ 4
5.	(a) $\begin{gathered} M(A) \quad T \times 2 a \sin \theta=W a+2 W(2 a-x) \\ T \times \frac{6}{5} a=5 w a-2 W x \\ T=\frac{5(5 a-2 x)}{6 a} W+\cos \end{gathered}$ (b) $M(B)$ $\begin{aligned} & \frac{7}{6} W \times 2 a=W a+2 W x \\ & x=\frac{2}{3} a \end{aligned}$ (c) $R(\rightarrow)$ $\begin{aligned} x & =T \cos \theta=\frac{5}{6}\left(5-\frac{4}{3}\right) W \times \frac{4}{5} \\ & =\frac{22}{9} W \end{aligned}$ Altemative to (b) $R(t)$ $\begin{gathered} \frac{7}{6} W+T \sin \theta=3 W \\ \frac{7}{6} w+\frac{5(5 a-2 x) w}{6 a} \times \frac{3}{5}=3 W \\ x=\frac{2}{3} a \end{gathered}$	

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WCIB 5DN
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject MECHANICS 6678
Paper No. M2

Question number	Scheme	Marks		
$\underline{6}$	(a) LM $m u=m x+2 m y$ NEL NEL $\quad x-y=-e 4$ Solving to $y=\frac{1}{3}(1+e) u *$ cso. (b) Obtaining $x=\frac{1}{3}(1-2 e) u \quad$ allas anymuiai Divetion unchanged implies $x>0$ $e<\frac{1}{2}$ ignow ezo (c). $y=\frac{5}{12} u, x=\frac{1}{6} 4$ Final K.E $=\frac{1}{2} m\left(\frac{1}{6} u\right)^{2}+\frac{1}{2} 2 m\left(\frac{5}{12} u\right)^{2}\left(=\frac{27}{14 m u} m u^{2}\right)$ Loss in K.E $=\frac{1}{2} m u^{2}-\frac{27}{144} m u^{2}=\frac{5}{16} m u^{2}$ (d) Heat, sound, (wook done ing) intermal fokes	BI MI AI Mi Al MI AI M AI MI AI MIAI BI	5 4 4 4	(14)
7	(a) (\uparrow) $\begin{aligned} & u_{y}=80 \mathrm{sm} 60^{\circ}, v_{y}=0 \\ & 0^{2}=(80 \mathrm{sm} 60)^{2}-2 \times 9.8 \times \mathrm{s} \\ & s \approx 244.9 \end{aligned}$ Height is 260 m . Accent 265 (b) $\begin{aligned} & 0=80 \operatorname{sm} 60^{\circ}-9.8 t \\ & t=7.1 \text { (s) } \end{aligned}$ Accep 7.07 $(c)(\rightarrow)$ $u_{x}=80 \cos 60^{\circ}(=40)$ $\text { LM } \quad 100 \times 40=40 \times V+60 \times 80$ $\begin{equation*} v=(-) 20 \tag{cso} \end{equation*}$ (d) Let N be point an ground vertically below B $O N=80 \cos 60^{\circ} \times \text { their }(6)(=282.79), \ldots .$ \downarrow $\begin{aligned} & 264.9=\frac{1}{2} \times 9.8 \times t^{2} \Rightarrow t \approx 7.35 \\ & C N=20 \times 7.35 \approx 147 \\ & O C=14 O \mathrm{~cm}) \end{aligned}$	$\begin{aligned} & B 1, B! \\ & M I \\ & A! \\ & M! \\ & A! \\ & B! \\ & M I \\ & A 1 \\ & M! \\ & M I A! \\ & M I \end{aligned}$	4 2 3 6	(15)

Question Number	Scheme	Marks
1. (a) (b)	Differentiating: $\mathbf{a}=3 \mathbf{i}-5 \mathbf{j}$ (sufficient) Integrating: $\quad \mathbf{r}=\left(\frac{3}{2} t^{2}-2 t\right) \mathbf{i}-\frac{5}{2} t^{2} \mathbf{j}(+C)$ Using initial conditions to find $C(3 \mathbf{i}) ; \mathbf{r}(t=2)=5 \mathbf{i}-10 \mathbf{j}$ Distance $=\sqrt{ }\left\{5^{2}+(10)^{2}\right\} ;=5 \sqrt{ } 5$ or 11.2 or $11.18(\mathrm{~m})$	$\begin{array}{\|lr\|} \hline \text { M1A1 } & \text { (2) } \\ \text { M1A1 } \\ \text { M1; A1 } & \\ \text { M1; A1 } & \mathbf{6}) \\ \text { (6 marks) } \end{array}$
2. (a) (b)	$\begin{array}{ll} 0 \leq t \leq 3 & v=2 t^{2}-\frac{1}{3} t^{3}(+C) \\ t=3 \Rightarrow & v=9 \mathrm{~m} \mathrm{~s}^{-1} \tag{3}\\ t \geq 3 & v=-\frac{27}{t}(+C) \end{array} \quad \text { Evidence of integration for M1 }$ Using $t=3$ and candidates' $v=9$ to find $C ; C=18$ Substituting $t=6$ in expression for $v ; v=13.5 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 A1 B1 M1; A1 ft M1; A1 (8 marks)
3. (a) (b)	Change in KE: $\frac{1}{2} \times 80 \times\left(8^{2}-5^{2}\right) \quad$ [loss: $\left.2560-1000=1560 \mathrm{~J}\right]$ Change in PE: $80 \times g \times(20-12) \quad$ [loss: $15680-9408=6272 \mathrm{~J}]$ WD by cyclist $=20 \times 500-$ (loss in K.E. + P.E. $)$ $=2168 \mathrm{Nm} \quad \text { (allow } 2170 \text { and 2200) }$ Equation of motion: $\mathrm{F}-20=80 \times 0.5$ [M1 requires three terms] Power $=F_{c} \times 5$; $=300 \mathrm{~W}$	B1 B1 M1 A1 ft A1 (5) M1 A1 M1 A1 (9 marks)

($\mathrm{ft}=$ follow through mark)

Question Number	Scheme	Marks
4. (a)	Shape Square Semi-circle Lamina L Relative masses 100 $12 \frac{1}{2} \pi(39.3)$ $100-12 \frac{1}{2} \pi(60.7)$ Centre of mass from $A B$ 5 $\frac{20}{3 \pi}(2.12)$ \bar{x} Moments about $A B$: $100 \times 5-12 \frac{1}{2} \pi \times \frac{20}{3 \pi}=\left(100-12 \frac{1}{2} \pi\right) \bar{x}$ Answer: 6.86 cm Correct angle, diagram sufficient Method to find θ [or $(90-\theta)$] $\tan \theta=\frac{10-\bar{x}_{c}}{5}$ Answer: 32.1°	M1 A1 B1 B1 M1 A1 A1 (cao) (7) M1 M1 A1 ft A1 (cao) (4) (11 marks)
5. $\begin{array}{r}(a) \\ \\ \\ (b) \\ \\ (c)\end{array}$	$x=u \cos \alpha t ; \quad y=u \sin \alpha t-\frac{1}{2} g t^{2}$ Eliminating $t: \quad y=u \sin \alpha \frac{x}{u \cos \alpha}-\frac{1}{2} g \frac{x^{2}}{(u \cos \alpha)^{2}}$ $\begin{aligned} & y=x \tan \alpha-\frac{g x^{2}}{2 u^{2} \cos ^{2} \theta} \\ & y=x \tan \alpha-\frac{g x^{2}}{2 u^{2}}\left(1+\tan ^{2} \alpha\right)^{*} \\ & -2=x \tan 45^{\circ}-\frac{9.8 \times x^{2}}{2 \times 14^{2}}\left(1+\tan ^{2} 45^{\circ}\right) \end{aligned}$ Simplifying "correctly" to quadratic of form $a x^{2}+b x+c=0$ (may be implied, e.g. $x^{2}-20 x-40=0 ;-0.05 x^{2}+x+2=0 ; 4.9 x^{2}-98 x-196=0$) Solving for $t(2.205 \mathrm{~s}), x=14 \cos 45^{\circ} t, \quad x=21.8 \mathrm{~m}$ $21.8_{\mathrm{c}}=14 \cos 45^{\circ} t ; t=2.2 \mathrm{~s}$	B1; B1 M1 M1 A1 M1 A1 M1 M1 A1 (5) M1 A1 (cao) (2) marks)

(ft = follow through mark; cao = correct answer only; cso = correct solution only;

* indicates answer is given on the examination paper)

Question Number	Scheme	Marks
6. (a)	$\leftarrow v_{1}$ $\rightarrow v_{2}$ CoM: $m u=-m v_{1}+3 m v_{2}$ $\rightarrow u$ 0 \Rightarrow $u=-v_{1}+3 v_{2}$ $A O$ $B O$ NEL: $\mathrm{e} u=v_{2}+v_{1}$ Solving : $\begin{aligned} & v_{1}=\frac{1}{4}(3 e-1) u \\ & v_{2}=\frac{1}{4}(1+e) u \end{aligned}$ Speed of B after hitting wall $= \pm \frac{3}{16}(1+e) u \quad\left(v_{2}{ }^{*}\right)$ For second collision $\quad v_{2}{ }^{*}>v_{1} ; \quad \frac{3}{16}(1+e) u>\frac{1}{4}(3 e-1) u$ Solving, $e<\frac{7}{9}$ Finding lower bound using $\quad v_{1}>0 ; \quad \mathrm{e}>\frac{1}{3}$ Complete range: $\frac{1}{3}<e<\frac{7}{9}$	M1 A1 M1 A1 M1 A1 A1 (7) B1 ft M1 M1 A1 M1 A1 (cso) (6) (13 marks)
7. $\quad(a)$		M1 M1 A1 M1 M1 M1 A1 M1 A1 M1 A1 M1; A1 M1 (6) A1 (14 marks)

Question number	Scheme		Marks
1. (a)	Use of $(8+\lambda) m$ $\text { i: } 3 m \times 4+\lambda m \times 4=(8+\lambda) m \times 2$ Solving to $\lambda=2$ $\text { j: } \begin{align*} 5 m \times(-3)+2 m \times 2 & =10 m \times k \tag{*}\\ k & =-1.1 \end{align*}$		B1 M1 M1 A1 M1 A1 A1 (3) (7 marks)
(a) (b) (c)	$T_{r}=\frac{24000}{12}(=2000)$ N2L: $T_{r}-1200=1000 \times f$ $f=0.08$ Work Energy $\begin{aligned} \frac{1}{2} \times 1000 \times 14^{2} & =1200 d \\ d & =81 \frac{2}{3} \end{aligned}$ Resistances may vary with speed	awrt 81.7	M1 M1 A1ft A1 M1 A1 A1 B1 (8 marks)

Question number	Scheme	Marks
3.	$\begin{aligned} \mathrm{Fr} & \leq \mu R \Rightarrow \frac{3}{4} m g \leq \mu 3 m g \\ & \mu \geq \frac{1}{4}\left(\text { least value is } \frac{1}{4}\right) \end{aligned}$	B1 M1 A2 1,0 M1 A1 M1 M1 A1 (9) (9 marks)
4. (a)		B1, B1ft B1 M1 A1 A1 (6) M1 A1 A1 (3) (9 marks)

Question
 number

PROVISIONAL MARK SCHEME J ANUARY 2003

Question Number	Scheme	Marks
1. (a)	$\begin{aligned} x & =\int 6 t-2 t^{2} \mathrm{~d} x \\ & =3 t^{2}-\frac{2}{3} t^{3} \\ v & =0 \Rightarrow 6 \mathrm{t}-2 t^{2}=0 \Rightarrow t=3(\text { or } 0) \\ t & =3: x=(3 \times 9)-\left(\frac{2}{3} \times 27\right)=9 \mathrm{~m} \end{aligned}$	M1 A1 M1 M1 A1 (5 marks)
2. (a) (b) (c)	$\begin{aligned} \mathbf{I} & =0.2[(15 \mathbf{i}+15 \mathbf{j})-(-10 \mathbf{i})] \\ & =5 \mathbf{i}+3 \mathbf{j} \\ \|\mathbf{I}\| & =\sqrt{ }\left(5^{2}+3^{2}\right)=\sqrt{ } 34=5.8 \mathrm{Ns} \end{aligned}$ $\tan \theta=\frac{3}{5} \Rightarrow \theta=31^{\circ}$ (nearest degree) $\text { K E Gain } \left.=\frac{1}{2} \times 0.2\left[\left(15^{2}+15^{2}\right)-10^{2}\right)\right]=35 \mathrm{~J}$	
3. (a)		B1 B1 B1 M1 A1 (5) M1 A1 ft A1 A1 (4) (9 marks)

($\mathrm{ft}=$ follow through mark)

Question Number	Scheme	Marks
4. (a) (b) (c)	$(\rightarrow): X=T \cos \alpha$ (个) $Y+T \sin \alpha=100 g$ $\begin{aligned} R=\sqrt{ }\left(X^{2}+Y^{2}\right) & =\sqrt{ }\left(784^{2}+392^{2}\right) \\ & =877 \mathrm{~N}(3 \mathrm{sf}) \end{aligned}$ $\mathrm{M}(A)$, $40 g \times \frac{3}{2}+60 g \times 2=T \sin \alpha \times 3$ use of $\sin \alpha=\frac{3}{5}$ $60 g+120 g=\frac{9 T}{5}$ $\Rightarrow T=100 g=980 \mathrm{~N}\left(^{*}\right)$ Cable light \Rightarrow tension same throughout \Rightarrow force on rod at D is 60 g	M1 A2, 1, 0 B1 A1 (5) B1 M1 A1 M1 A1 A1 (6) B1 (12 marks)
5. (a) (b)		M1 A1 (2) M1 A1 M1 M1 A1 (7) B1 ft M1 A1 ft M1 A1 cao (5) (12 marks)

$\left(\mathrm{ft}=\right.$ follow through mark; cao $=$ correct answer only; $\left(^{*}\right)$ indicates final line is given on the paper $)$

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& \& Scheme \& Marks \\
\hline \multirow[t]{3}{*}{(a)

(b)} \& \multicolumn{2}{|l|}{\multirow[t]{12}{*}{| $\begin{aligned} (\nearrow): \mathrm{F} & =20+64 g \sin \alpha \\ & =64.8 \mathrm{~N} \\ P=\mathrm{F} v & =64.8 \times 5=324 \mathrm{~W} \end{aligned}$ |
| :--- |
| $64 g$ $\frac{8}{5} \times 20=32 \mathrm{~N}$ |
| $64 g$ |
| (\swarrow): $64 g \sin \alpha-20=64 a$ |
| $a=0.3875 \mathrm{~m} \mathrm{~s}^{-2}$ |
| $v^{2}=5^{2}+2 \times 0.3875 \times 80$ |
| $v=\sqrt{ } 87=9.3 \mathrm{~m} \mathrm{~s}^{-1}$ |
| $\mathrm{F}=\frac{200}{8}$ |
| $\frac{200}{8}+64 g \sin \alpha-32=64 a$ $\begin{equation*} a=0.59 \mathrm{~m} \mathrm{~s}^{-2} \tag{2sf} \end{equation*}$ |}} \& M1

\hline \& \& \& A1

\hline \& \& \& M1 A1 (4)

\hline \multirow[t]{4}{*}{(b)} \& \& \& M1 A1

\hline \& \& \& A1

\hline \& \& \& M1

\hline \& \& \& A1 (5)

\hline \multirow[t]{5}{*}{| (c) |
| :--- |
| (d) |} \& \& \& B1 (1)

\hline \& \& \& B1

\hline \& \& \& M1 A1

\hline \& \& \& A1 (4)

\hline \& \& \& (14 marks)

\hline
\end{tabular}

$(\mathrm{cso}=$ correct solution only $)$

Question Number	Scheme	Marks
1. (a)	$\begin{aligned} & T=\frac{10000}{20} \text { or equivalent } \\ & T-R-400 \mathrm{~g} \sin \theta=0 \\ & R=220 \end{aligned}$	M1 A1 M1 A1 A1 (5 marks)
$2 .$ (a) (b)	$\begin{aligned} & \mathbf{a}=2 t \mathbf{i}-6 \mathbf{j} \\ t=4: & \mathbf{a}=8 \mathbf{i}-6 \mathbf{j} \\ & \|\mathbf{F}\|=0.75 \sqrt{\left(8^{2}+6^{2}\right)}=7.5 \mathrm{~N} \\ & \mathbf{I}=9 \mathbf{i}-9 \mathbf{j} \\ & 9 \mathbf{i}-9 \mathbf{j}=\frac{3}{4}(\mathbf{v}-(27 \mathbf{i}-30 \mathbf{j})) \\ & \mathbf{v}=39 \mathbf{i}-42 \mathbf{j} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 dep. M1 M1 M1 A1 (5) B1 M1 A1 f.t. M1 A1 (4) (9 marks)
3. (a) (b)		

Question Number	Scheme	Marks
4. (a) (b) (c)	$\begin{aligned} & M(B), N 2 a \cos \theta=\mathrm{W} a \cos \theta+\frac{1}{4} W \frac{3 a}{2} \sin \theta \\ & N=\frac{7 W}{8} \\ & R=\frac{1}{4} W ; \quad F+N=W \\ & F \leq \mu R \text { or } F=\mu R \\ & \frac{1}{2} \leq \mu^{*} \text { (exact) } \end{aligned}$ It does not bend Or has negligible thickness	M1 A2 (-1 e.e.) dep. M1 A1 B1; B1 M1 A1 c.s.o. B1 (5) \quad (10 marks)
5. (a) (b) (c)		M1 A1 M1 A1 dep. M1 A1 (6) M1 A1 (2) M1 M1 A1 A1 M1 M1 A1 A1 (12 marks)

$\left(\mathrm{ft}=\right.$ follow through mark; cao $=$ correct answer only; $\left(^{*}\right)$ indicates final line is given on the paper $)$

Question Number	Scheme	Marks
6. $\begin{aligned} &(a) \\ & \\ &(b) \\ & \\ & \\ & \\ & \text { c) }\end{aligned}$	$u \rightarrow \quad \rightarrow 0 \quad$ CLM: $m u=m \nu_{1}+3 m \nu_{2}$	B1
	$m \quad 3 m \quad$ NIL: $e u=-v_{1}+v_{2}$	M1 A1
	$v_{1} \rightarrow \quad v_{2} \rightarrow \quad$ solving,	dep. M1
	$v_{2}=\frac{u}{4}(1+e)^{*}$	A1 (5)
	Solving for $v_{1} ;\left\|\frac{u}{4}(1-3 e)\right\|$	M1 A1 (2)
	$\frac{1}{2} m \frac{u^{2}}{16}(1-3 e)^{2}+\frac{1}{2} 3 m \frac{u^{2}}{16}(1+e)^{2}=\frac{1}{6} m u^{2}$	M1 A1 f.t. A1
	$e^{2}=\frac{1}{9}$	dep. M1 A1
	$e=\frac{1}{3}$	A1 (6)
	$v_{1}=\frac{u}{4}\left(1-3 \times \frac{1}{3}\right)=0 \Rightarrow$ at rest.	A1 c.s.o. (1)
		(14 marks)

Question Number	Scheme	Marks
1. (a) (b)	$F=\frac{36000}{20} \quad(=1800)$ N2L $\quad \frac{3600}{20}-750=1500 a$ ft their F $a=0.7 \quad\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ $\begin{aligned} & \nearrow F=750+1500 g \times \frac{1}{10} \quad(=2220) \\ & P=2220 \times 20=44400 \end{aligned}$ Accept also $44000,44 \mathrm{~kW}, 44.4 \mathrm{~kW}$	B1 M1 A1ft A1 4 M1 A1 A1 3 7
2.	(a) $\begin{aligned} \mathbf{I} & =m \mathbf{v}-m \mathbf{u} \\ -4 \mathbf{i}+4 \mathbf{j} & =0.2 \mathbf{v}-0.2 \times 30 \mathbf{i} \\ \mathbf{v} & =10 \mathbf{i}+20 \mathbf{j} \quad\left(\mathrm{~ms}^{-1}\right) \end{aligned}$ (b) $\begin{aligned} \tan \theta & =\frac{20}{10} \\ \theta & =63.4^{\circ} \quad \text { accept awrt } 63^{\circ} \text { or } 1.1^{\text {c }} \end{aligned}$ (c) $\begin{aligned} & \text { Final K.E. }=\frac{1}{2} \times 0.2 \times\left(10^{2}+20^{2}\right) \quad(=50) \\ & \begin{aligned} \text { K.E. lost } & =\frac{1}{2} \times 0.2 \times 30^{2}-\frac{1}{2} \times 0.2 \times\left(10^{2}+20^{2}\right) \\ & =40 \quad(\mathrm{~J}) \end{aligned} \end{aligned}$ cao	M1 A1 A1 $\underline{3}$ M1 A1 $\underline{2}$ M1 A1ft M1 A1 $\underline{4}$ 9

Question Number	Scheme	Marks
4.	(a) $\begin{aligned} \mathbf{p} & =\left(2 t^{2}-7 t\right) \mathbf{i}-5 t \mathbf{j},+3 \mathbf{i}+5 \mathbf{j} \\ & =\left(2 t^{2}-7 t+3\right) \mathbf{i}+(5-5 t) \mathbf{j} \end{aligned}$ (b) $\quad \mathbf{q}=(2 \mathbf{i}-3 \mathbf{j}) t-7 \mathbf{i}$ $\mathbf{j}: \quad 5-5 t=-3 t \Rightarrow t=2.5 \quad$ equating and solving At $t=2.5 \mathbf{i}$: $\begin{aligned} & p_{x}=2 \times 2.5^{2}-7 \times 2.5+3=-2 \\ & q_{x}=2 \times 2.5-7=-2 \\ & p_{x}=q_{x} \Rightarrow \text { collision } \end{aligned}$ both	M1, M1 A1+A1 $\underline{4}$ M1 A1 M1 A1 M1 A1 $\underline{6} \quad 10$
	Alternative in (b) i : $\begin{aligned} 2 t^{2}-7 t+3 & =2 t-7 & \Rightarrow & 2 t^{2}-9 t+10=0 \\ t & =2,2.5 & & \text { equating and solving } \end{aligned}$ At $t=2.5 \mathbf{j}$: $\begin{aligned} & p_{y}=5-5 \times 2.5=-7.5 \\ & q_{y}=-3 \times 2.5=-7.5 \\ & p_{y}=q_{y} \Rightarrow \text { collision } \end{aligned}$ both In alternative, ignore any working associated with $t=2$	M1 A1 M1 A1

Question Number		Scheme	Marks
5.	(a)	$\begin{aligned} \text { LM } & 10 m u=2 m x+3 m y \\ \text { NEL } & y-x=5 e u \end{aligned}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { B1 } \end{aligned}$
	(b)	Solving to $\quad y=2(1+e) u * \quad$ cso $\begin{array}{ll} x=2 u-3 e u & \text { finding } x, \text { with or without } e=0.4 \\ x=0.8 u & \end{array}$	$\text { M1 A1 } \underline{5}$ M1 A1
	(c)	$\begin{aligned} x>0 & \Rightarrow P \text { moves towards wall and } Q \text { rebounds from wall } \\ & \Rightarrow \text { second collision } \\ & \mathrm{ft} \text { any positive } x \\ x & =-0.4 u \end{aligned}$	A1 ft $\underline{3}$ B1
		Speed of Q on rebound is $3.6 f u$ For second collision $3.6 f u>0.4 u$ $f>\frac{1}{9}$ ignore $f \mid 1$	$\begin{array}{llll} \text { M1 } & & \\ \text { A1 } & \underline{3} & \mathbf{1 1} \end{array}$

January 2005

6678 Mechanics M2

Mark Scheme

Question Number	Scheme	Marks
1.	(a) $M(A) \quad W \times 4 a=T \times 8 a \sin \theta$ Using a value of $\sin \theta$ and solving $T=\frac{5}{6} W *$ cso (b) \rightarrow $\begin{aligned} X & =T \cos \theta \\ & =\frac{2}{3} W \end{aligned}$	$\begin{array}{\|lll} \text { M1 A1 } & & \\ \text { M1 } & & \\ \text { A1 } & \underline{4} & \\ & & \\ \text { M1 A1 } & & \\ \text { A1 } & \underline{3} & 7 \end{array}$
2.	(a) circle rectangle plate Mass ratios 9π $200 ;$ $200-9 \pi$ Centres of mass 6 10 \bar{x} (b)	B1; B1 ft B1 M1 A1 $\underline{5}$ M1 A1ft A1 $\quad 3 \quad 8$

Question Number	Scheme	Marks
3.	(a) $\quad \mathrm{KE}$ lost is $\frac{1}{2} \times 0.6 \times\left(10^{2}-9^{2}\right)(=5.7 \mathrm{~J})$ PE lost is $0.6 \times 9.8 \times 12 \sin 30^{\circ}(=35.28 \mathrm{~J})$ Total loss in energy is $41.0(\mathrm{~J})$ accept 41 (b) $\quad R=0.6 \times 9.8 \times \cos 30^{\circ}(\approx 5.09)$ WE $\quad 40.98=\mu \times 0.6 \times 9.8 \times \cos 30^{\circ} \times 12 \quad \mathrm{ft}$ their (a) $\mu \approx 0.67$ or 0.671 Alternative for (b) $a=\frac{9^{2}-10^{2}}{2 \times 12}\left(=(-) \frac{19}{24}\right)$ awrt 0.79 N2L $\begin{gathered} m g \sin 30^{\circ}-\mu m g \cos 30^{\circ}=m\left(-\frac{19}{24}\right) \\ \mu \approx 0.67 \text { or } 0.671 \end{gathered}$	B1 B1 M1 A1 4 B1 M1 A1ft M1 A1 59 B1 M1 A1ft M1 A1 5
4.	(a) $\begin{aligned} \ddot{\mathbf{r}} & =6 \mathbf{i}+(2 t+3) \mathbf{j} \\ \mathbf{F} & =0.4(6 \mathbf{i}+11 \mathbf{j}) \\ \|\mathbf{F}\| & =\sqrt{ }\left(2.4^{2}+4.4^{2}\right) \\ & \approx 5.0 \end{aligned}$ $0.4 \times$ something obtained by differentiation, with $t=4$ modulus of a vector accept more accurate answers (b) $\mathbf{r}=\left(3 t^{2}+4 t\right) \mathbf{i}+\left(\frac{1}{3} t^{3}+\frac{3}{2} t^{2}\right) \mathbf{j}(+\mathbf{C})$ Using boundary values, $t=4, \quad \mathbf{r}=61 \mathbf{i}+49 \frac{1}{3} \mathbf{j}$ $O S=\sqrt{ }\left(61^{2}+49 \frac{1}{3}^{2}\right) \approx 78(\mathrm{~m}) \quad \text { accept more accurate answers }$	B1 M1 M1 A1 4 M1 A1 A1 M1 A1 59

Question Number	Scheme	Marks
5.	(a) $\begin{array}{rlrl} & 50000 & =F \times 25(F=2000) \\ \rightarrow \quad F & =R+750 \\ R & =1250 * \end{array}$ or equivalent cso (b) $\begin{gathered} \text { N2L } \quad 1500+2000=2500 a \\ a=1.4\left(\mathrm{~ms}^{-2}\right) \end{gathered}$ ignore sign of a cao (c) Trailer: $T+R=1500 \times 1.4$ or Car: $T-1500-750=1000 \times-1.4$ $T=850(\mathrm{~N})$ (d) $\begin{aligned} 25^{2} & =2 \times 1.4 \times s \quad(s=223.2 \ldots) \\ W & =1500 \times s \\ & =335(\mathrm{~kJ}) \end{aligned}$ ft their s accept 330 (e) Resistances vary with speeds	M1 M1 A1 $\underline{3}$ M1 A1 A1 $\underline{3}$ M1 A1 $\underline{2}$ M1 M1 A1ft A1 $\underline{4}$ B1 1 13
6.	(a) $\mathrm{LM} 6 m u-2 m u=3 m x+2 m y$ NEL $\quad y-x=3 e u$ Solving to $y=\frac{1}{5} u(9 e+4) *$ cso (b) Solving to $x=\frac{2}{5} u(2-3 e)$ oe $x<0 \Rightarrow e>\frac{2}{3}$ $\left.\frac{2}{3}<e \right\rvert\, 1 \quad \mathrm{ft}$ their e for glb (c) $2 m\left[\frac{1}{5} u(9 e+4)+u\right]=\frac{32}{5} m u$ Solving to $e=\frac{7}{9}$ awrt 0.78	M1 A1 B1 M1 A1 5 M1 A1 M1 A1 A1ft $\underline{5}$ M1 A1 M1 A1 414

Question Number	Scheme	Marks
7.	(a) $\begin{aligned} \uparrow u_{y} & =32 \times \frac{3}{5}(=19.2) \\ -20 & =19.2 t-4.9 t^{2} \\ t & \approx 4.8 \text { or } 4.77(\mathrm{~s}) \end{aligned}$ -1 each error	$\begin{array}{\|lc} \text { B1 } & \\ \text { M1 A2(1,0) } \\ \text { A1 } \quad \underline{5} \end{array}$
	$\text { (b) } \quad \begin{aligned} \rightarrow u_{x} & =32 \times \frac{4}{5}(=25.6) \\ d & =25.6 \times 4.77 \ldots \\ & \approx 120 \text { or } 122(\mathrm{~m}) \end{aligned}$	$\begin{array}{ll} \mathrm{B} 1 & \\ \text { M1 } & \\ \text { A1 } & \underline{3} \end{array}$
	$\text { (c) } \quad \begin{aligned} \uparrow v_{y}^{2} & =19.2^{2}+2 \times 9.8 \times 4 \quad\left[v_{y}^{2}=447.04, v_{y} \approx 21.14\right] \\ V^{2} & =447.04+25.6^{2} \\ V & =33 \text { or } 33.2\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 A1 } \\ \text { A1 } & 4 \end{array}$
	(d) $\tan \theta=\frac{21.14}{25.6} \quad\left(\right.$ or $\left.\cos \theta=\frac{25.6}{33.2}, \ldots\right) \quad \mathrm{ft}$ their components or resultant $\theta \approx 40^{\circ}$ or 39.6°	M1 A1ft $\begin{array}{lll} \mathrm{A} 1 & \underline{3} & \mathbf{1 5} \end{array}$
	Alternative for (c) $\begin{aligned} \frac{1}{2} m\left(V^{2}-32^{2}\right) & =m g \times 4 \\ V^{2} & =1102.4 \\ V & =33 \text { or } 33.2\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1 } \\ & \text { A1 } \quad 4 \end{aligned}$
	There is a maximum penalty of one mark per question for not rounding to appropriate accuracy.	

GCE

Edexcel GCE

Mechanics M2 (6678)

Summer 2005

Mark Scheme (Results)

J une 2005
 6678 Mechanics M2
 Mark Scheme

Question Number	Scheme	Marks
1.	(a) Kinetic Energy $=\frac{1}{2} \times 3 \times 8^{2}=96$, J (b) Work-Energy $\begin{align*} F & =\mu 3 g \tag{2}\\ \mu 3 g \times 12 & =96 \\ \mu & =0.27 \text { or } 0.272 \end{align*}$ Alternative for (b) $\begin{array}{r} a=\frac{8^{2}-0^{2}}{2 \times 12}=\frac{8}{3} \\ \mu 3 g \end{array}$ N2L $\mu 3 g=3 \times \frac{8}{3}$ $\mu=0.27 \text { or } 0.272$	B1 M1 A1ft A1 (4) B1 M1 A1 A1 (4)
2.	(a) $\begin{aligned} \dot{\mathbf{r}} & =(2 t+4) \mathbf{i}+\left(3-3 t^{2}\right) \mathbf{j} \\ \dot{\mathbf{r}}_{3} & =10 \mathbf{i}-24 \mathbf{j} \quad \text { substituting } t=3 \\ \left\|\dot{\mathbf{r}}_{3}\right\| & =\sqrt{ }\left(10^{2}+24^{2}\right)=26\left(\mathrm{~ms}^{-1}\right) \end{aligned}$ (b) $\begin{array}{rlr} 0.4(\mathbf{v}-(10 \mathbf{i}-24 \mathbf{j})) & =8 \mathbf{i}-12 \mathbf{j} & \mathrm{ft} \text { their } \dot{\mathbf{r}}_{3} \\ \mathbf{v} & =30 \mathbf{i}-54 \mathbf{j} \quad\left(\mathrm{~m} \mathrm{~s}^{-1}\right) & \end{array}$	M1 A1 M1 M1 A1 (5) M1 A1ft A1 (3)
3.	(a) $T_{r}=\frac{12000}{15} \quad(=800)$ N2L $\begin{aligned} 800-R & =1000 \times 0.2 \\ R & =600 * \end{aligned}$ ft their 800 cso (b) $\begin{aligned} 1000 \mathrm{~g} \times \frac{1}{40}+T_{r} & =R \\ T_{r} & =\frac{7000}{U} \\ U & \approx 20 \end{aligned}$ accept 19.7	M1 M1 A1ft A1 (4) M1 A1 M1 M1 A1 (5)

Question Number	Scheme	Marks
7.	(a) $\begin{gather*} u_{x}=11 \cos 30^{\circ} \\ \rightarrow \quad 11 \cos 30^{\circ} \times t=10 \Rightarrow t=1.05 \tag{s} \end{gather*}$	B1 M1 A1 (3)
	(b) $\begin{aligned} & s=\underline{11 \sin 30^{\circ}} \times t-4.9 t^{2} \approx 0.37 \\ & (2-1)-0.37=0.63 \quad(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { B1 M1 A1 } \\ & \text { A1 } \end{aligned}$ (4)
	(c) $\begin{gathered} V \cos 30^{\circ} \times t=10 \quad\left(t=\frac{10}{V \cos 30^{\circ}}\right) \\ s=V \sin 30^{\circ} \times \frac{10}{V \cos 30^{\circ}}-\frac{4.9 \times 100}{V^{2} \cos ^{2} \theta}=1 \\ V^{2}=136.86 \\ V \approx 12 \quad \text { accept } 11.7 \end{gathered}$	M1 A1 M1 A1 M1 A1 (6)
	(d) B and/or T are not particles (They have extension giving a range of answers)	B1 (1)

Edexcel GCE

Mechanics Unit no. 6678/ 01

J une 2006

Mark Scheme
(Results)

General Instructions

1. The total number of marks for the paper is 75.
2. Method (M) marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
3. Accuracy (A) marks can only be awarded if the relevant method (M) marks have been earned.
4. (B) marks are independent of method marks.
5. Method marks should not be subdivided.
6. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. Indicate this action by 'MR' in the body of the script (but see also note 10).
7. If a candidate makes more than one attempt at any question:
(a) If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
(b) If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
8. Marks for each question, or part of a question, must appear in the right-hand margin and, in addition, total marks for each question, even where zero, must be ringed and appear in the right-hand margin and on the grid on the front of the answer book. It is important that a check is made to ensure that the totals in the right-hand margin of the ringed marks and of the unringed marks are equal. The total mark for the paper must be put on the top righthand corner of the front cover of the answer book.
9. For methods of solution not in the mark scheme, allocate the available M and A marks in as closely equivalent a way as possible, and indicate this by the letters 'OS' (outside scheme) put alongside in the body of the script.
10. All A marks are 'correct answer only' (c.a.o.) unless shown, for example, as Al f.t. to indicate that previous wrong working is to be followed through. In the body of the script the symbol should be used for correct f.t. and for incorrect f.t. After a misread, however, the subsequent A marks affected are treated as A f.t., but manifestly absurd answers should never be awarded A marks.
11. Ignore wrong working or incorrect statements following a correct answer.

M2 June 2006

Mark scheme

1.

$$
\begin{gathered}
a=5-2 t \Rightarrow v=5 t-t^{2},+6 \\
v=0 \Rightarrow t^{2}-5 t-6=0 \\
(t-6)(t+1)=0 \\
t=\underline{6 \mathrm{~s}}
\end{gathered}
$$

M1 A1, A1
indep M1
dep M1
A1
(6)
2. (a)
$\frac{P}{24}=600$ or $\frac{1000 P}{24}=600 \Rightarrow P=14.4 \mathrm{~kW}$
M1 A1
(2)
(b) $\frac{30000}{20}-1200 \times 9.8 \times \sin \alpha-600=1200 a$

$$
\Rightarrow a=\underline{0.4 \mathrm{~m} \mathrm{~s}^{-2}}
$$

M1 A2, 1,0
A1
(4)
3. (a) $I= \pm 0.5(16 \mathbf{i}+20 \mathbf{j}-(-30 \mathbf{i}))$

$$
= \pm(23 \mathbf{i}+10 \mathbf{j})
$$

indep M1

$$
\operatorname{magn}=\sqrt{ }\left(23^{2}+10^{2}\right) \approx \underline{25.1 \mathrm{Ns}}
$$

indep M1 A1
(4)
(b) $\quad \mathbf{v}=16 \mathbf{i}+(20-10 t) \mathbf{j}$
$t=3 \Rightarrow \mathbf{v}=16 \mathbf{i}-10 \mathbf{j}$
$v=\sqrt{ }\left(16^{2}+10^{2}\right) \quad \approx 18.9 \mathrm{~m} \mathrm{~s}^{-1}$
M1
indep M1
indep M1 A1
(4)
4. (a) Total mass $=12 \mathrm{~m}$ (used)
(i) $\mathrm{M}(A B): m \cdot 3 a / 2+m \cdot 3 a / 2+m \cdot 3 a+6 m \cdot 3 a+2 m \cdot 3 a=12 m \cdot x$ indep M1 A1

$$
\Rightarrow x=\frac{5}{2} a
$$

(ii) $\mathrm{M}(A D): \quad m \cdot a+m \cdot a+m \cdot 2 a+6 m \cdot 2 a=12 m \cdot y$
indep M1 A1

$$
\Rightarrow y=\frac{4}{3} a
$$

A1
(7)
(b) $\quad \tan \alpha=\frac{2 a-4 a / 3}{5 a / 2}$

$$
\Rightarrow \alpha \approx \underline{14.9^{\circ}}
$$

A1 cao
(3)
5. (a) $\quad x_{A}=28 t \quad x_{B}=35 \cos \alpha t$ B1 B1

$$
\begin{equation*}
\text { Meet } \Rightarrow 28 t=35 \cos \alpha t \Rightarrow \cos \alpha=28 / 35=4 / 5^{*} \tag{4}
\end{equation*}
$$

(b) $\quad y_{A}=73.5-1 / 2 g t^{2} \quad y_{B}=21 t-1 / 2 g t^{2}$

B1 B1

$$
\text { Meet } \Rightarrow 73.5=21 t \Rightarrow t=\underline{3.5 \mathrm{~s}}
$$

(4)

(3)
(b) $\quad \mathrm{R}(\uparrow): \quad R+S \cos æ=5 m g$

M1 A1
$\mathrm{R}(\rightarrow): \quad F=S$ sinœ
M1 A1

$$
F \leq \mu R \Rightarrow \mu \geq \frac{48}{61} * \quad \text { dep on both previous M's M1 A1 }
$$

(6)
(c) Direction of S is perpendicular to plank or No friction at the peg B1
7. (a) $\quad R=4 g \cos \alpha=16 g / 5 \Rightarrow F=2 / 7 \times 16 g / 5$

M1 A1

$$
\begin{equation*}
\text { Work done }=F \times 2.5=\underline{22.4 \mathrm{~J}} \quad \text { or } 22 \mathrm{~J} \quad \text { indep } \mathrm{M} 1 \mathrm{~A} 1 \tag{4}
\end{equation*}
$$

(b) $\quad 1 / 2 \times 4 \times u^{2}=22.4+4 g \times 2.5 \times 3 / 5$

M1 A2, 1,0 f.t.

$$
\begin{equation*}
\Rightarrow u \approx \underline{6.37 \mathrm{~m} \mathrm{~s}^{-1}} \quad \text { or } 6.4 \mathrm{~ms}^{-1} \tag{4}
\end{equation*}
$$

A1cao
(c) $\quad 1 / 2 \times 4 \times v^{2}=1 / 2 \times 4 \times u^{2}-44.8$

M1 A2, 1,0 f.t.
[OR $\left.\quad 1 / 2 \times 4 \times v^{2}=0+4 g \times 2.5 \times 3 / 5-22.4\right]$

$$
\begin{equation*}
\Rightarrow v \approx \underline{4.27 \mathrm{~m} \mathrm{~s}^{-1}} \quad \text { or } 4.3 \mathrm{~ms}^{-1} \tag{4}
\end{equation*}
$$

A1
8. (a)

$$
\begin{array}{ccc}
m u=4 m w-m v & \text { M1 A1 } \\
e u=w+v & \text { M1 A1 } \\
\Rightarrow w=\left(\frac{1+e}{5}\right) u, \quad v=\left(\frac{4 e-1}{5}\right) u & \text { indep M1 A1 A1 }
\end{array}
$$

(b) $\quad w^{\prime}=\left(\frac{4+4 e}{25}\right) u$

B1 f.t.
Second collision $\Rightarrow w^{\prime}>v$
$\Rightarrow \quad \frac{4+4 e}{25}>\frac{4 e-1}{5}$
$\Rightarrow \quad e<9 / 16$
dep M1 A1
Also $v>0 \Rightarrow e>1 / 4 \quad$ Hence result (*)
B1
(c)

KE lost $=1 / 2 m u^{2}-\left[1 / 2.4 m\{(u / 5)(1+\mathrm{e})\}^{2}+1 / 2 m\{(u / 5)(4 \mathrm{e}-1)\}^{2}\right] \quad$ M1 A1 f.t.

$$
=\frac{3}{10} m u^{2}
$$

A1 cao

Mark Scheme (Results) J anuary 2007

GCE

GCE Mathematics

Mechanics M2 (6678)

J anuary 2007
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
1.	(a) $\quad \frac{1}{2} 0.8\left(15^{2}-10^{2}\right)=50$ (b)	$\begin{array}{llll} \text { M1 A1 } & \underline{2} & \tag{J}\\ & & \\ \text { M1 } & & \\ \text { M1 A1ft } & & \\ \text { A1 } & \underline{4} & 6 \end{array}$
	Alternative for (b) $\begin{gather*} v^{2}=u^{2}+2 a s \Rightarrow a=\frac{15^{2}-10^{2}}{2 \times 20}=3.125 \\ \text { N2L } \quad F=\mu m g=m a=3.125 \mathrm{~m} \\ \mu \approx 0.32 \tag{accept 0.319} \end{gather*}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 A1ft } \\ & \text { A1 } \quad \underline{4} \end{aligned}$
	Alternative for (b) $\begin{aligned} & \text { WE } \quad F=\frac{50}{20}(=2.5) \\ & F=\mu R \Rightarrow \frac{50}{20}=\mu 0.8 \mathrm{~g} \quad \mathrm{ft} \mathrm{their} \mathrm{(a)} \\ & \mu \approx 0.32 \end{aligned}$	M1 M1 A1 ft A1 4
	The first M1 for (b) could be scored in (a): $\begin{aligned} & v^{2}=u^{2}+2 a s \Rightarrow 10^{2}=15^{2}-2 \times 20 \times(-) a \Rightarrow a=(-) \frac{125}{40} \\ & F=m a \Rightarrow F=2.5 \\ & W D=F \times d \Rightarrow 2.5 \times 20=50 \mathrm{~J} \end{aligned}$	(b) M 1 (a) M1A1

Question Number	Scheme	Marks
3.	 (b) M (axis) $\begin{aligned} 11 M= & 12 \times \frac{1}{4} m \\ ((36-\bar{x}) M & \left.=12 \times \frac{1}{4} m\right) \\ M & =\frac{3}{11} m(\text { o.e.e. }) \end{aligned}$ $\mathrm{ft} \text { their } \bar{x}$	$\begin{array}{ll} \mathrm{B} 1, \mathrm{~B} 1 \mathrm{ft} \\ & \\ \mathrm{M} 1 * \mathrm{~A} 1 & \\ \mathrm{DM} 1 * \mathrm{~A} 1 & \underline{6} \\ & \\ \mathrm{M} 1 \div \mathrm{A} 1 \mathrm{ft} & \\ & \\ \mathrm{DM} 1 \dagger \mathrm{~A} 1 & \underline{4} \\ & \mathbf{1 0} \end{array}$
4. (a) (b) (c)		$\begin{array}{lrl} \begin{array}{lr} \text { M1 A1 } & \\ \text { A1 } & \underline{3} \\ \text { M1 A1ft } & \\ \text { A1 } & \underline{3} \\ & \\ \text { M1 A1ft } & \\ \text { M1 } & \\ \text { A1 } & \underline{4} \\ & \\ \text { M1 A1 } & \underline{2} \end{array} \\ \hline 12 \end{array}$

Question Number	Scheme	Marks
5.	(b) $\quad \rightarrow \quad R=T \cos \theta=\frac{10}{3} m g \times \frac{4}{5} ;=\frac{8}{3} m g$ (c) $\quad \uparrow \quad F+T \sin \theta=3 m g \quad \Rightarrow \quad F=m g \quad \mathrm{ft}$ their T Or: $\mathrm{M}(\mathrm{B}) F \times 4 a=m g \times 2 a+2 m g \times a \Rightarrow F=m g$ $F=\mu R \Rightarrow \mu=\frac{3}{8}$ (a) Alternative approach: $\rightarrow R=T \cos \theta$ $\uparrow \quad F+T \sin \theta=3 m g$ $\mathrm{M}(\mathrm{~B}) F \times 4 a=m g \times 2 a+2 m g \times a(\Rightarrow F=m g)$ $\Rightarrow m g+T \sin \theta=3 m g \Rightarrow T=\frac{2 m g}{\sin \theta}=\frac{10 m g}{3}$ If they use this method, watch out for $\mathrm{F}=\mathrm{mg}$ just quoted in (c): M1A1	$\begin{aligned} & \text { M1*A1=A1 } \\ & \text { DM1*A1 } \underline{5} \\ & \\ & \\ & \\ & \text { M1 A1ft; A1 } \\ & \\ & \\ & \text { M1 } \underline{3} \\ & \text { A1ft } \\ & \\ & \text { M1 A1 } \underline{4} \\ & \hline 12 \end{aligned}$

Question Number	Scheme	Marks
7.	(a) Energy $\frac{1}{2} m\left(24.5^{2}-u^{2}\right)=m g \times 15$ $\begin{gather*} u^{2}=24.5^{2}-30 g=306.25 \\ u=\sqrt{306.25}=17.5 \quad \star \tag{cso} \end{gather*}$ (b) $\begin{gathered} \rightarrow \quad u_{x}=u \cos \theta=17.5 \times 0.8=14 \\ \psi=\arccos \frac{14}{24.5} \approx 55^{\circ} \end{gathered}$ accept 55.2° (0.96 rads, or 0.963 rads) (c) $\begin{array}{r} \uparrow u_{y}=u \sin \theta=17.5 \times 0.6=10.5 \\ s=u t+\frac{1}{2} a t^{2} \Rightarrow \quad-45=10.5 t-4.9 t^{2} \end{array}$ leading to $t=4.3$, awrt $t=4.3$ or $t=4 \frac{2}{7}$ $\begin{aligned} \rightarrow \quad B D & =14 \times 4 \frac{2}{7} \quad(14 \mathrm{x} t) \quad \mathrm{ft} \text { their } t \\ & =60(\mathrm{~m}) \text { only } \end{aligned}$	M1 A1 A1 A1 $\underline{4}$ B1 M1 A1 $\underline{3}$ B1 M1 A1 A1 M1 A1ft A1 7 $\mathbf{1 4}$
	Alternative for (a) $\begin{aligned} \rightarrow u_{x} & =u \cos \theta=0.8 u, \uparrow u_{y}=u \sin \theta=0.6 u \\ v_{y}^{2} & =0.36 u^{2}+2 \times 9.8 \times 15=0.36 u^{2}+294 \\ 24.5^{2} & =u_{x}^{2}+v_{y}^{2}=0.64 u^{2},+0.36 u^{2}+294 \\ u^{2} & =306.25 \Rightarrow u=17.5 \quad \star \end{aligned}$ Alternative for (b) $\begin{aligned} \rightarrow \quad u_{x} & =u \cos \theta=17.5 \times 0.8=14 \\ \uparrow \quad v_{y}^{2} & =u^{2} \sin ^{2} \theta+2 \times 9.8 \times 15=404.25 \\ & \psi=\arctan \frac{\sqrt{ } 404.25}{14} \approx 55^{\circ} \quad \text { accept } 55.2^{\circ} \end{aligned}$ Alternative for (c) Use of $y=x \tan \theta-\frac{g \sec ^{2} \vartheta}{2 u^{2}} x^{2}$ $\begin{aligned} & -45=\frac{3}{4} x,-\frac{g}{2 \times 17.5^{2}} \times \frac{25}{16} x^{2} \\ & x^{2}-30 x-1800=0 \text { o.e. } \end{aligned}$ Factors or quadratic formula $\mathrm{BD}=60(\mathrm{~m})$	M1 A1,A1 A1 $\underline{4}$ B1 M1 A1 $\underline{3}$ M1 B1,A1 A1 M1 A1ft A1

advancing learning, changing lives

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Mechanics M2 (6678)

General:
For M marks, correct number of terms, dimensionally correct, all terms that need resolving are resolved.
Omission of g from a resolution is an accuracy error, not a method error.
Omission of mass from a resolution is a method error.
Omission of a length from a moments equation is a method error.
Where there is only one method mark for a question or part of a question, this is for a complete method.
Omission of units is not (usually) counted as an error.
When resolving, condone sin/cos confusion for M1, but M0 for tan or dividing by sin/cos.

1	$\begin{aligned} \text { Force exerted }= & 444 / 6(=74 \mathrm{~N}) \\ & R+90 g \sin \alpha=444 / 6 \\ & \Rightarrow R=\underline{32 \mathrm{~N}} \end{aligned}$	B1 M1 A1 A1 (4)
	B1 444/6 seen or implied M1 Resolve parallel to the slope for a 3 term equation - condone sign errors and sin/cos confusion A1 All three terms correct - expression as on scheme or exact equivalent A1 32(N) only	
$2 \text {.(a) }$ (b)	$a=d v / d t=6 t i-4 j$ Using $\mathrm{F}=1 / 2 \mathrm{a}$, sub $t=2$, finding modulus $\begin{aligned} & \text { e.g. at } t=2, \mathrm{a}=12 \mathrm{i}-4 \mathrm{j} \\ & \qquad \begin{aligned} \mathrm{F} & =6 \mathrm{i}-2 \mathrm{j} \\ \mid \mathrm{F} & \mid=\sqrt{ }\left(6^{2}+2^{2}\right) \approx 6.32 \mathrm{~N} \end{aligned} \end{aligned}$	M1 A1 (2) M1, M1, M1 A1(CSO) (4)
	M1 Clear attempt to differentiate. Condone \mathbf{i} or \mathbf{j} missing. A1 both terms correct (column vectors are OK) The 3 method marks can be tackled in any order, but for consistency on epen grid please enter as: M1 $\mathbf{F}=$ ma (their \mathbf{a}, (correct \mathbf{a} or following from (a)), not $\mathbf{v} . \mathbf{F}=\frac{1}{2} \mathbf{a}$). Condone a not a vector for this mark. M1 subst $t=2$ into candidate's vector \mathbf{F} or a (a correct or following from (a), not \mathbf{v}) M1 Modulus of candidate's \mathbf{F} or $\mathbf{a}($ not $\mathbf{v})$ A1 CSO All correct (beware fortuitous answers e.g. from 6ti+4j)) Accept 6.3, awrt 6.32, any exact equivalent e.g. $2 \sqrt{ } 10, \sqrt{ } 40, \frac{\sqrt{160}}{2}$	

4. (a) (b)	PE lost $=2 m g h-m g h \sin \alpha(=7 m g h / 5)$ Normal reaction $R=m g \cos \alpha(=4 m g / 5)$ Work-energy: $\quad \frac{1}{2} m v^{2}+\frac{1}{2} \cdot 2 m v^{2}=\frac{7 m g h}{5}-\frac{5}{8} \cdot \frac{4 m g}{5} \cdot h$ $\Rightarrow \frac{3}{2} m v^{2}=\frac{9 m g h}{10} \Rightarrow v^{2}=\frac{3}{5} g h$	M1 A1 (2) B1 M1 A2, 1,0 A1 (5)
	M1 Two term expression for PE lost. Condone sign errors and sin/cos confusion, but must be vertical distance moved for A A1 Both terms correct, $\sin \alpha$ correct, but need not be simplified. Allow 13.72 mh . Unambiguous statement. B1 Normal reaction between A and the plane. Allow when seen in (b) provided it is clearly the normal reaction. Must use cos α but need not be substituted. M1(NB QUESTION SPECIFIES WORK \& ENERGY) substitute into equation of the form PE lost = Work done against friction plus KE gained. Condone sign errors. They must include KE of both particles. A1A1 All three elements correct (including signs) A1A0 Two elements correct, but follow their GPE and $\mu \mathrm{x}$ their Rxh. A1 V^{2} correct (NB kgh specified in the Q)	

8. (a) $\quad \begin{aligned} 0 \leq t \leq 4: & \quad \begin{aligned} a & =8-3 t \\ a & =0 \Rightarrow t=8 / 3 \mathrm{~s} \\ & \rightarrow v=8 \cdot \frac{8}{3}-\frac{3}{2} \cdot\left(\frac{8}{3}\right)^{2}=\frac{32}{3}(\mathrm{~m} / \mathrm{s})\end{aligned}\end{aligned}$
second M1 dependent on the first, and third dependent on the second.
(b) $\quad s=4 t^{2}-t^{3} / 2$
$t=4: s=64-64 / 2=\underline{32 \mathrm{~m}}$
(c) $\quad t>4: \quad v=0 \Rightarrow t=\underline{8 \mathrm{~s}}$
(d)

Either
$t>4 \quad s=16 t-t^{2}(+C)$
$t=4, s=32 \rightarrow C=-16 \Rightarrow s=16 t-t^{2}-16$
$t=10 \rightarrow s=44 \mathrm{~m}$
But direction changed, so: $t=8, s=48$
Hence total dist travelled $=48+4=\underline{52 \mathrm{~m}}$
Or (probably accompanied by a sketch?)
$\mathrm{t}=4 \quad \mathrm{v}=8, \mathrm{t}=8 \quad \mathrm{v}=0$, so area under line $=\frac{1}{2} \times(8-4) \times 8$
$\mathrm{t}=8 \mathrm{v}=0, \mathrm{t}=10 \mathrm{v}=-4$, so area above line $=\frac{1}{2} \times(10-8) \times 4$
Hence total distance $=32($ from b) $+16+4=\underline{52 \mathrm{~m}}$.
DM1 A1

M1A1A1
M1A1A1
M1A1

Or M1, A1 for $\mathrm{t}>4 \frac{d v}{d t}=-2,=$ constant $\mathrm{t}=4, \mathrm{v}=8 ; \mathrm{t}=8, \mathrm{v}=0 ; \mathrm{t}=10, \mathrm{v}=-4$
M1, A1 $s=\frac{u+v}{2} t=\frac{32}{2} t,=16$ working for $\mathrm{t}=4$ to $\mathrm{t}=8$
M1, A1 $s=\frac{u+v}{2} t=\frac{-4}{2} t,=-4$ working for $\mathrm{t}=8$ to $\mathrm{t}=10$ $\mathrm{M} 1, \mathrm{~A} 1$ total $=32+14+4,=52$

M1 Differentiate to obtain acceleration
DM1 set acceleration. $=0$ and solve for t
DM1 use their t to find the value of v
A1 32/3, 10.7oro better
OR using trial an improvement:
M1 Iterative method that goes beyond integer values
M1 Establish maximum occurs for t in an interval no bigger than $2.5<\mathrm{t}<3.5$
M1 Establish maximum occurs for t in an interval no bigger than $2.6<\mathrm{t}<2.8$
A1

Or M1 Find/state the coordinates of both points where the curve cuts the x axis.
DM1 Find the midpoint of these two values.
M1A1 as above.
Or M1 Convincing attempt to complete the square:
DM1 substantially correct $\quad 8 t-\frac{3 t^{2}}{2}=-\frac{3}{2}\left(t-\frac{8}{3}\right)^{2}+\frac{3}{2} \times \frac{64}{9}$
DM1 Max value $=$ constant term
A1 CSO
M1 Integrate the correct expression
DM1 Substitute $\mathrm{t}=4$ to find distance ($\mathrm{s}=0$ when $\mathrm{t}=0$ - condone omission / ignoring of constant of integration)
A1 32(m) only
B1 $\mathrm{t}=8$ (s) only
M1 Integrate 16-2t
M1 Use $t=4$, $s=$ their value from (b) to find the value of the constant of integration. or $32+$ integral with a lower limit of 4 (in which case you probably see these two marks
occurring with the next two. First A1 will be for 4 correctly substituted.)
A1 $s=16 t-t^{2}-16$ or equivalent
M1 substitute $\mathrm{t}=10$
A1 44
M1 Substitute $\mathrm{t}=8$ (their value from (c))
DM1 Calculate total distance (M mark dependent on the previous M mark.)
A1 52 (m)
OR the candidate who recognizes $\mathrm{v}=16-2 \mathrm{t}$ as a straight line can divide the shape into two triangles:

M1 distance for $\mathrm{t}=4$ to $\mathrm{t}=$ candidate's $8=1 / 2 \mathrm{x}$ change in time x change in speed.

A1 8-4
A1 8-0
M1 distance for $\mathrm{t}=$ their 8 to $\mathrm{t}=10=1 / 2 \mathrm{x}$ change in time x change in speed.
A1 10-8
A1 0-(-4)
M1 Total distance $=$ their (b) plus the two triangles $(=32+16+4)$.
A1 52(m)

Mark Scheme (Results) J anuary 2008

GCE

GCE Mathematics (6678/ 01)

J anuary 2008
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
1.	(a) \quad KE lost is $\frac{1}{2} \times 2.5 \times 8^{2}=80(\mathrm{~J})$ (b) \quad Work energy \quad80 $=R \times 20$ R $=4$$\quad$ ft their (a) Alternative to (b) $\begin{aligned} & 0^{2}=8^{2}-2 \times a \\ \mathrm{~N} 2 \mathrm{~L} \quad & \\ & =20 \Rightarrow a=(-) 1.6 \\ & =2.5 \times 1.6 \\ & =4 \end{aligned}$	$\begin{array}{ll} \text { M1 A1 } \\ & \text { (2) } \\ \text { M1 A1 ft } \\ \text { A1 } & \text { (3) } \\ & {[5]} \\ & \\ \text { M1 A1ft } \\ \text { A1 } & \\ \hline \end{array}$
2.	(a) $\quad \dot{\mathbf{p}}=(6 t-6) \mathbf{i}+\left(9 t^{2}-4\right) \mathbf{j} \quad\left(\mathrm{m} \mathrm{s}^{-1}\right)$ (b) $\begin{aligned} 9 t^{2}-4 & =0 \\ t & =\frac{2}{3} \end{aligned}$ (c) $t=1 \Rightarrow \dot{\mathbf{p}}=5 \mathbf{j}$ ft their \dot{p} $(+/-)$ $2 \mathbf{i}-6 \mathbf{j}=0.5(\mathbf{v}-5 \mathbf{j})$ $\mathbf{v}=4 \mathbf{i}-7 \mathbf{j} \quad\left(\mathrm{~ms}^{-1}\right)$	M1 A1 M1 DM1 A1 B1ft M1 M1 A1 (4)

Question Number	Scheme	Marks
3.	(a) $\begin{array}{llr} 20000=16 F \quad(F=1250) \\ \boldsymbol{\pi} & F=550+1000 \times 9.8 \sin \theta & \text { ft their } F \\ & \text { Leading to } \sin \theta=\frac{1}{14} \quad * & \text { cso } \end{array}$ (b) N2L 7 $\begin{aligned} & 550+1000 \times 9.8 \times \sin \theta=1000 a \\ & \left(550+1000 \times 9.8 \times \frac{1}{14}=1000 a\right) \end{aligned}$ $\text { or } 1250=1000 a$ $(a=(-) 1.25)$ $v^{2}=u^{2}+2 a s \Rightarrow 16^{2}=2 \times 1.25 \times y$ $y \approx 102$ accept 102.4, 100 Alternative to (b) Work-Energy $\begin{gathered} \frac{1}{2} \times 1000 \times 16^{2}-1000 \times 9.8 \times \frac{1}{14} y=550 y \\ y \approx 102 \quad \text { accept } 102.4,100 \end{gathered}$	
4.	(a) Triangle Circle S Mass ratio 126 9π $126-9 \pi$ (28.3) (97.7) \bar{x} 7 5 \bar{x} \bar{y} 4 5 \bar{y} 4,7 seen $126 \times 7=9 \pi \times 5+(126-9 \pi) \times \bar{X}$ ft their table values $\bar{x} \approx 7.58\left(\frac{882-45 \pi}{126-9 \pi}\right) \quad \text { awrt } 7.6$ $126 \times 4=9 \pi \times 5+(126-9 \pi) \times \bar{y}$ ft their table values $\bar{y} \approx 3.71\left(\frac{504-45 \pi}{126-9 \pi}\right) \quad$ awrt 3.7 (b) $\begin{aligned} \tan \theta & =\frac{\bar{y}}{21-\bar{x}} \quad \text { ft their } \bar{x}, \bar{y} \\ \theta & \approx 15^{\circ} \end{aligned}$	B1 B1ft B1 M1 A1ft A1 M1 A1ft A1 (9) M1 A1ft A1 (3) [12]

Question Number	Scheme	Marks
5.	(a) $\mathrm{M}(A)$ $\begin{aligned} N \times 4 a \cos 30^{\circ} & =3 m g \times a \sin 30^{\circ}+m g \times 2 a \sin 30^{\circ} \\ & N=\frac{5}{4} m g \tan 30^{\circ}\left(=\frac{5}{4 \sqrt{3}} m g=7.07 \ldots \mathrm{~m}\right) \\ \rightarrow & F_{r}=N \quad, \quad \uparrow R=4 m g \end{aligned}$ Using $F_{r}=\mu R$ $\frac{5}{4 \sqrt{ } 3} m g=\mu R \quad$ for their R $\mu=\frac{5}{16 \sqrt{ } 3}$ awrt 0.18 Alternative method: $\begin{aligned} & \mathrm{M}(\mathrm{~B}): m g \times 2 a \sin 30+3 m g \times 3 a \sin 30+F \times 4 a \cos 30=R \times 4 a \sin 30 \\ & \quad 11 m g a \sin 30+F \times 4 a \cos 30=R \times 4 a \sin 30 \\ & \quad \frac{11 m g}{2}+F \frac{4 \sqrt{3}}{2}=2 R \\ & \quad \uparrow \quad R=4 m g, \\ & \mathrm{Using} F_{r}=\mu R \\ & 8 \mu \sqrt{3}=\frac{5}{2}, \quad \mu=\frac{5}{16 \sqrt{ } 3} \end{aligned}$	M1 A2(1,0) DM1 A1 B1, B1 B1 M1 A1 (10) [10] M1A3(2,1,0) DM1A1 B1 B1 M1 A1

GCE

Edexcel GCE
Mathematics
Mechanics 2 M2 (6678)

J une 2008

Final Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

J une 2008
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
1.	Resolve $\begin{aligned} & \text { e } \pi: T_{r}+\frac{2000 g \times \sin \alpha}{\left(T_{r}=816\right)}=1600 \\ & \begin{aligned} P= & 816 \times 14(\mathrm{~W}) \quad \text { ft their } T_{r} \\ & \approx 11(\mathrm{~kW}) \quad \text { accept } 11.4 \end{aligned} \end{aligned}$	M1 A1 A1 M1 A1ft A1 cso (6) [6]
2.	(a) LM NEL $\begin{gathered} 12 m u+6 m u=4 m x+12 m e u \\ 4 e u-x=e u \end{gathered}$ Eliminating x to obtain equation in e Leading to $\quad e=\frac{3}{4}$ (b) $\quad x=3 e u$ or $\frac{9}{4} u$ or $4.5 \mathrm{u}-3 \mathrm{eu} \quad$ seen or implied in (b) Loss in $\mathrm{KE}=\frac{1}{2} 4 m(3 u)^{2}+\frac{1}{2} 3 m(2 u)^{2}-\frac{1}{2} 4 m\left(\frac{9}{4} u\right)^{2}-\frac{1}{2} 3 m(3 u)^{2}$ ft their x $=24 m u^{2}-23 \frac{5}{8} m u^{2}=\frac{3}{8} m u^{2}=0.375 m u^{2}$	B1 M1 A1 DM1 A1 (5) B1 M1 A1ft A1 (4) [9]

Question Number	Scheme	Marks
3.	(a $\Delta \mathrm{KE}=\frac{1}{2} \times 3.5\left(12^{2}-8^{2}\right)(=140)$ or KE at A, B correct separately $\Delta \mathrm{PE}=3.5 \times 9.8 \times 14 \sin 20^{\circ}(\approx 164.238)$ or PE at A, B correct separately $\Delta \mathrm{E}=\Delta \mathrm{KE}+\Delta \mathrm{PE} \approx 304, \quad 300$ (b) Using Work-Energy $\begin{aligned} F_{r}=\mu & \times 3.5 \mathrm{~g} \cos 20^{\circ} \\ 304.238 \ldots & =F_{r} \times 14 \\ 304.238 \ldots & =\mu 3.5 \mathrm{~g} \cos 20^{\circ} \times 14 \\ \mu & \approx 0.674,0.67 \end{aligned} \quad \text { ft their (a), } F_{r}$ Alternative using N2L $\begin{aligned} & F_{r}=\mu \times 3.5 g \cos 20^{\circ} \\ & v^{2}=u^{2}+2 a s \quad \Rightarrow 8^{2}=12^{2}-2 a \times 14 \\ & \quad\left(a=\frac{20}{7}\right)(2.857 \ldots) \end{aligned}$ N2L R $\mathbb{R}:\left\{\right.$ their $\left.F_{r}\right\}-m g \sin 20^{\circ}=m a$	B1 M1 A1 DM1 A1 (5) M1 A1 M1 A1 ft A1 (5) [10] M1 A1 M1 A1ft A1 (5)
4.	(a) $\text { N2L } \begin{aligned} & (6 t-5) \mathbf{i}+\left(t^{2}-2 t\right) \mathbf{j}=0.5 \mathbf{a} \\ \mathbf{a} & =(12 t-10) \mathbf{i}+\left(2 t^{2}-4 t\right) \mathbf{j} \\ \mathbf{v} & =\left(6 t^{2}-10 t\right) \mathbf{i}+\left(\frac{2}{3} t^{3}-2 t^{2}\right) \mathbf{j} \quad(+\mathbf{C}) \quad \text { ft their } \mathbf{a} \\ \mathbf{v} & =\left(6 t^{2}-10 t+1\right) \mathbf{i}+\left(\frac{2}{3} t^{3}-2 t^{2}-4\right) \mathbf{j} \end{aligned}$ (b) When $t=3$, $\begin{array}{rlr} \mathbf{v}_{3} & =25 \mathbf{i}-4 \mathbf{j} & \\ -5 \mathbf{i}+12 \mathbf{j} & =0.5(\mathbf{v}-(25 \mathbf{i}-4 \mathbf{j})) \\ \mathbf{v} & =15 \mathbf{i}+20 \mathbf{j} & \text { ft their } \mathbf{v}_{3} \\ \|\mathbf{v}\|=\sqrt{ }\left(15^{2}+20^{2}\right)=25 \quad\left(\mathrm{~ms}^{-1}\right) & \end{array}$	M1 A1 M1 A1ft+A1ft A1 (6) M1 M1 A1ft A1 M1 A1 (6) [12]

Mark Scheme (Results) J anuary 2009

GCE

GCE Mathematics (6678/ 01)

J anuary 2009
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
1	$\mathrm{F}=$ ma parallel to the slope, $T-1500 g \sin \theta-650=1500 a$ Tractive force, $30000=T \times 15$ $\begin{aligned} & a=\frac{\frac{30000}{15}-1500(9.8)\left(\frac{1}{14}\right)-650}{1500} \\ & \underline{0.2}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	M1* A1 M1* d*M1 A1 (5)
2 (a)	$\begin{aligned} & \mathrm{R}(\uparrow): R=25 g+75 g(=100 g) \\ & \begin{aligned} F=\mu R & \Rightarrow F=\frac{11}{25} \times 100 g \\ & =44 \mathrm{~g}(=431) \end{aligned} \end{aligned}$	B1 M1 A1
(b)	$\begin{aligned} & \mathrm{M}(A): \\ & 25 g \times 2 \cos \beta+75 g \times 2.8 \cos \beta \\ & =S \times 4 \sin \beta \\ & \mathrm{R}(\leftrightarrow): F=S \\ & 176 g \sin \beta=260 g \cos \beta \\ & \beta=56\left(^{\circ}\right) \end{aligned}$	M1 A2, 1, 0 M1A1 A1
(c)	So that Reece's weight acts directly at the point C.	(6) B1 [10]

Question Number	Scheme	Marks
6 (a) ${ }^{(b)}$ (c) ${ }^{(0)}$	Horizontal distance: $\begin{aligned} 57.6 & =p \times 3 \\ p & =19.2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	Use $s=u t+\frac{1}{2} a t^{2}$ for vertical displacement.	M1
	$\begin{aligned} & -0.9=q \times 3-\frac{1}{2} g \times 3^{2} \\ & -0.9=3 q-\frac{9 g}{2}=3 q-44.1 \end{aligned}$	A1
	$q=\frac{43.2}{3}=14.4 \quad * \mathbf{A G}^{*}$	A1 cso
		(3)
	initial speed $\sqrt{p^{2}+14.4^{2}} \quad$ (with their p)	M1
	$=\sqrt{576}=\underline{24}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1 cao
		(2)
	$\tan \alpha=\frac{14.4}{p}\left(=\frac{3}{4}\right) \quad \quad \text { (with their } p \text {) }$	B1
		(1)
	When the ball is 4 m above ground:	
	$3.1=u t+\frac{1}{2} a t^{2} \text { used }$	M1
	$3.1=14.4 t-\frac{1}{2} g t^{2} \text { o.e }\left(4.9 t^{2}-14.4 t+3.1=0\right)$	A1
	$\Rightarrow t=\frac{14.4 \pm \sqrt{(14.4)^{2}-4(4.9)(3.1)}}{2(4.9)} \quad \text { seen or implied }$	M1
	$t=\frac{14.4 \pm \sqrt{146.6}}{9.8}=0.023389 \ldots \text { or } 2.70488 \ldots \quad \text { awrt } 0.23 \text { and } 2.7$	A1
	duration $=2.70488 . . .0 .23389 \ldots$	M1
	$=2.47$ or 2.5 (seconds)	A1
		(6)
or 6 (e)	M1A1M1 as above	
	$t=\frac{14.4 \pm \sqrt{ } 146.6}{9.8}$	A1
	Duration $2 \times \frac{\sqrt{146.6}}{9.8}$ o.e.	M1
	9.8	
	$=2.47$ or 2.5 (seconds)	A1
(f)	Eg. : Variable ' g ', Air resistance, Speed of wind, Swing of ball, The ball is not a particle.	B1
		$\begin{array}{r} (1) \\ {[15]} \\ \hline \end{array}$

Question Number	Scheme	Marks
(d)	After collision with wall, speed $Q=\frac{1}{5} y=\frac{1}{5}\left(\frac{5 u}{4}\right)=\frac{1}{4} u \quad$ their y Time for $P, T_{A B}=\frac{\frac{3 d}{5}-x}{\frac{1}{2} u}$, Time for $Q, T_{W B}=\frac{x}{\frac{1}{4} u} \quad$ from their y Hence $T_{A B}=T_{W B} \Rightarrow \frac{\frac{3 d}{5}-x}{\frac{1}{2} u}=\frac{x}{\frac{1}{4} u}$ gives, $2\left(\frac{3 d}{5}-x\right)=4 x \Rightarrow \frac{3 d}{5}-x=2 x, 3 x=\frac{3 d}{5} \Rightarrow x=\frac{1}{5} d$	B1ft B1ft M1 Al cao (4)
or (d)	After collision with wall, speed $Q=\frac{1}{5} y=\frac{1}{5}\left(\frac{5 u}{4}\right)=\frac{1}{4} u \quad$ their y speed $P=x=\frac{1}{2} u$, speed P : new speed $Q=\frac{1}{2} u: \frac{1}{4} u=2: 1$ from their y Distance of B from wall $=\frac{1}{3} \times \frac{3 d}{5} ;=\frac{d}{5}$ their $\frac{1}{2+1}$	B1ft B1ft M1; A1
$2^{\text {nd }}$ or (d)	After collision with wall, speed $Q=\frac{1}{5} y=\frac{1}{5}\left(\frac{5 u}{4}\right)=\frac{1}{4} u \quad$ their y Combined speed of P and $Q=\frac{1}{2} u+\frac{1}{4} u=\frac{3}{4} u$ Time from wall to $2^{\text {nd }}$ collision $=\frac{\frac{3 d}{5}}{\frac{3 u}{4}}=\frac{3 d}{5} \times \frac{4}{3 u}=\frac{4 d}{5 u} \quad$ from their y Distance of B from wall $=($ their speed $) x($ their time $)=\frac{u}{4} \times \frac{4 d}{5 u} ;=\frac{1}{5} d$	B1ft B1ft M1; A1 (4) [17]

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6678/ 01)

J une 2009
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{aligned} & \mathbf{I}=m \mathbf{v}-m \mathbf{u} \\ & 5 \mathbf{i}-3 \mathbf{j}=\frac{1}{4} \mathbf{v}-\frac{1}{4}(3 \mathbf{i}+7 \mathbf{j}) \\ & \mathbf{v}=23 \mathbf{i}-5 \mathbf{j} \\ & \|\mathbf{v}\|=\sqrt{23^{2}+5^{2}}=23.5 \end{aligned}$	M1A1 A1 M1A1 [5]
(a) (b)	$\begin{aligned} & \frac{d v}{d t}=8-2 t \\ & 8-2 t=0 \\ & \operatorname{Max} v=8 \times 4-4^{2}=16\left(\mathrm{~ms}^{-1}\right) \\ & \int 8 t-t^{2} d t=4 t^{2}-\frac{1}{3} t^{3}(+c) \\ & (t=0, \text { displacement }=0 \Rightarrow c=0) \\ & 4 T^{2}-\frac{1}{3} T^{3}=0 \\ & T^{2}\left(4-\frac{T}{3}\right)=0 \Rightarrow T=0,12 \\ & T=12 \text { (seconds) } \end{aligned}$	M1 M1 M1A1 (4) M1A1 DM1 DM1 A1 (5) [9]
Q3 (a) (b)	Constant $\mathrm{v} \Rightarrow$ driving force $=$ resistance $\begin{aligned} & \Rightarrow \mathrm{F}=120(\mathrm{~N}) \\ & \Rightarrow \mathrm{P}=120 \times 10=1200 \mathrm{~W} \end{aligned}$ Resolving parallel to the slope, zero acceleration: $\begin{aligned} \frac{P}{v} & =120+300 g \sin \theta(=330) \\ \Rightarrow \mathrm{v} & =\frac{1200}{330}=3.6\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	M1 M1 (2) M1A1A1 A1 (4) [6]

Question Number	Scheme	Marks
Q4 (a)	 Taking moments about A : $\begin{aligned} & 3 g \times 0.75=\frac{T}{\sqrt{2}} \times 0.5 \\ & T=3 \sqrt{2} g \times \frac{7.5}{5}=\frac{9 \sqrt{2} g}{2}(=62.4 \mathrm{~N}) \end{aligned}$ $\begin{aligned} & \leftarrow \pm H=\frac{T}{\sqrt{2}}\left(=\frac{9 g}{2} \approx 44.1 N\right) \\ & \uparrow \pm V+\frac{T}{\sqrt{2}}=3 g \quad\left(\Rightarrow V=3 g-\frac{9 g}{2}=\frac{-3 g}{2} \approx-14.7 \mathrm{~N}\right) \\ & \Rightarrow\|R\|=\sqrt{81+9} \times \frac{g}{2} \approx 46.5(\mathrm{~N}) \end{aligned}$ at angle $\tan ^{-1} \frac{1}{3}=18.4^{\circ}$ (0.322 radians) below the line of $B A$ 161.6° (2.82 radians) below the line of AB (108.4° or 1.89 radians to upward vertical)	M1A1A1 A1 (4) B1 M1A1 M1A1 M1A1
Q5 (a) (b)	Ratio of areas triangle:sign:rectangle $=1: 5: 6$ (1800:9000:10800) Centre of mass of the triangle is 20 cm down from $A D$ (seen or implied) $\begin{aligned} & \Rightarrow 6 \times 45-1 \times 20=5 \times \bar{y} \\ & \quad \bar{y}=50 \mathrm{~cm} \end{aligned}$ Distance of centre of mass from $A B$ is 60 cm $\begin{aligned} & \text { Required angle is } \tan ^{-1} \frac{60}{50} \\ &=50.2^{\circ}(0.876 \mathrm{rads}) \end{aligned}$ (their values)	B1 B1 M1A1 A1 (5) B1 M1A1ft A1 (4) [9]

Question Number	Scheme	Marks
Q8 (a)		
	A B C 0	
	Conservation of momentum: $4 m u-3 m v=3 m k v$	M1A1
	Impact law: $k v=\frac{3}{4}(u+v)$	M1A1
	Eliminate k: $\quad 4 m u-3 m v=3 m \times \frac{3}{4}(u+v)$	DM1
	$u=3 v$ (Answer given)	A1
		(6)
(b)	$k v=\frac{3}{4}(3 v+v), k=3$	M1, A1
		(2)
(c)	Impact law: $(k v+2 v) e=v_{C}-v_{B} \quad\left(5 v e=v_{C}-v_{B}\right)$	B1
	Conservation of momentum : $3 \times k v-1 \times 2 v=3 v_{B}+v_{c} \quad\left(7 v=3 v_{B}+v_{c}\right)$	B1
	Eliminate $v_{C}: v_{B}=\frac{v}{4}(7-5 e)>0$ hence no further collision with A.	M1 A1
		[12]

Mark Scheme (Results) J anuary 2010

GCE

Mechanics M2 (6678)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2010
Publications Code UA022965
All the material in this publication is copyright
© Edexcel Ltd 2010

J anuary 2010
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
Q1.	$\begin{gathered} \frac{\mathrm{d} v}{\mathrm{~d} t}=6 t-4 \\ 6 t-4=0 \Rightarrow t=\frac{2}{3} \\ s=\int 3 t^{2}-4 t+3 \mathrm{~d} t=t^{3}-2 t^{2}+3 t(+c) \\ t=\frac{2}{3} \Rightarrow s=-\frac{16}{27}+2 \text { so distance is } \frac{38}{27} \mathrm{~m} \end{gathered}$	M1 A1 M1 A1 M1 A1 M1 A1
Q2.	$\text { CLM: } 4 m u-m u=2 m v_{1}+m v_{2}$ i.e. $3 u=2 v_{1}+v_{2}$ NIL: $\begin{gathered} 3 e u=-v_{1}+v_{2} \\ v_{1}=u(1-e) \\ v_{2}=u(1+2 e) \end{gathered}$	M1 A1 M1 A1 DM1 A1 A1
Q3.	$\begin{aligned} & \frac{1}{2} \times 0.5 \times 20^{2} ; 0.5 \mathrm{~g} \times 10 \\ & 10 R=\frac{1}{2} \times 0.5 \times 20^{2}-0.5 \mathrm{~g} \times 10 \\ & \Rightarrow R=5.1 \end{aligned}$	B1 B1 M1 A1 DM1 A1

Question Number	Scheme	Marks
Q8.	(a) $x=u t$	B1
	$y=c u t-4.9 t^{2}$	M1 A1
	eliminating t and simplifying to give $\quad y=c x-\frac{4.9 x^{2}}{u^{2}} * *$	DM1 A1 (5)
	(b)(i) $0=c x-\frac{4.9 x^{2}}{u^{2}}$	M1
	$0=x\left(c-\frac{4.9 x}{u^{2}}\right) \Rightarrow R=\frac{u^{2} c}{4.9}=10 c$	M1 A1
	(ii) When $x=5 \mathrm{c}, \quad y=H$	M1
	$=5 c^{2}-\frac{(5 c)^{2}}{10}=2.5 c^{2}$	M1 A1 (6)
	(c) $\frac{d y}{d x}=c-\frac{9.8 x}{u^{2}}=c-\frac{x}{5}$	M1 A1
	When $x=0, \frac{d y}{d x}=c$	B1
	So, $c-\frac{x}{5}=\frac{-1}{c}$	DM1 A1
	$x=5\left(c+\frac{1}{c}\right)$	A1 (6)
	Alternative to 8(c)	B1
		M1 A1
		M1
		A1
		A1

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA022965 J anuary 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH
advancing learning, changing lives

Mark Scheme (Results) Summer 2010

GCE

GCE Mechanics M2 (6678/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA024472
All the material in this publication is copyright
© Edexcel Ltd 2010

Summer 2010

Mechanics M2 6678

Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{aligned} & n \\ & \frac{\mathrm{~d} v}{\mathrm{~d} t}=3 t+5 \\ & v=\int(3 t+5) \mathrm{d} t \\ & v=\frac{3}{2} t^{2}+5 t \quad(+c) \\ & t=0 \quad v=2 \Rightarrow c=2 \\ & v=\frac{3}{2} t^{2}+5 t+2 \\ & t=T \quad 6=\frac{3}{2} T^{2}+5 T+2 \\ & 12=3 T^{2}+10 T+4 \\ & 3 T^{2}+10 T-8=0 \\ & (3 T-2)(T+4)=0 \\ & T=\frac{2}{3} \quad(T=-4) \\ & \therefore T=\frac{2}{3} \quad(\text { or } 0.67) \end{aligned}$	M1* A1 B1 DM1* M1 A1

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline Q2 \& \& \begin{tabular}{l}
M1 A1 A1 \\
A1
\end{tabular} \\
\hline (b) \& \[
\begin{aligned}
\mathrm{R}(\uparrow) \quad R \& =0.6 \mathrm{~g} \cos 30 \\
F \& =\frac{30.48}{12} \\
F \& =\mu R \\
\mu \& =\frac{30.48}{12 \times 0.6 \mathrm{~g} \cos 30} \\
\mu \& =0.4987 \\
\mu \& =0.499 \text { or } 0.50
\end{aligned}
\] \& B1
B1ft
M1

A1

\hline
\end{tabular}

| Question |
| :--- | :--- | :--- |
| Number |\quad Scheme \quad Marks

Question Number	Scheme	Marks
Q5 (a)	$\begin{align*} \mathbf{I} & =m \mathbf{v}-m \mathbf{u} \\ & =0.5 \times 20 \mathbf{i}-0.5(10 \mathbf{i}+24 \mathbf{j}) \\ & =5 \mathbf{i}-12 \mathbf{j} \\ \|5 \mathbf{i}-12 \mathbf{j}\| & =13 \mathrm{Ns} \tag{4} \end{align*}$	M1 A1 M1 A1
(b)	$\begin{aligned} \tan \theta & =\frac{12}{5} \\ \theta & =67.38 \\ \theta & =67.4^{\circ} \end{aligned}$	M1 A1 (2)
(c)	$\begin{aligned} \text { K.E.lost } & =\frac{1}{2} \times 0.5\left(10^{2}+24^{2}\right)-\frac{1}{2} \times 0.5 \times 20^{2} \\ & =69 \mathrm{~J} \end{aligned}$	M1 A1 A1 (3) [9]

Question Number	Scheme	Marks
Q6 $\begin{aligned} & \\ & \\ & \\ & \text { (a) }\end{aligned}$	 $\mathrm{M}(A) \quad 3 a \times T \cos \theta=2 a m g+4 a m g$ $\begin{align*} & \cos \theta=\left(\frac{2}{\sqrt{9+4}}=\right) \frac{2}{\sqrt{13}} \\ & \frac{6}{\sqrt{13}} T=6 m g \\ & T=m g \sqrt{13} * \tag{5} \end{align*}$	M1 A1 A1 B1 A1
(b)	$\begin{aligned} 3 a \times T \times \cos \theta & =2 a m g+4 a M g \\ T & =\frac{(2 m g+4 M g)}{6} \sqrt{13} \leq 2 m g \sqrt{13} \\ m g+2 M g & <6 m g \\ M & \leq \frac{5}{2} \quad * \end{aligned}$	M1 A1 A1 (3) [8]

Question Number	Scheme	Marks
Q7 (a)	Vertical motion: $\quad v^{2}=u^{2}+2 a s$ $\begin{align*} & (40 \sin \theta)^{2}=2 \times g \times 12 \\ & (\sin \theta)^{2}=\frac{2 \times g \times 12}{40^{2}} \\ & \theta=22.54=22.5^{\circ}(\text { accept } 23) \tag{3} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ A1
(b)	Vert motion $P \rightarrow R: s=u t+\frac{1}{2} a t^{2}$ $\begin{aligned} & -36=40 \sin \theta t-\frac{g}{2} t^{2} \\ & \frac{g}{2} t^{2}-40 \sin \theta t-36=0 \\ & t=\frac{40 \sin 22.54 \pm \sqrt{(40 \sin 22.54)^{2}+4 \times 4.9 \times 36}}{9.8} \\ & t=4.694 \ldots \end{aligned}$ Horizontal P to R: $\begin{gather*} s=40 \cos \theta t \\ =173 \mathrm{~m} \tag{6} \end{gather*}$ (or 170 m)	M1 A1 A1 A1 M1 A1
(c)	Using Energy: $\begin{align*} \frac{1}{2} m v^{2}-\frac{1}{2} m \times 40^{2} & =m \times g \times 36 \\ v^{2} & =2\left(9.8 \times 36+\frac{1}{2} \times 40^{2}\right) \\ v & =48.0 \ldots . \\ v & =48 \mathrm{~m} \mathrm{~s}^{-1}(\operatorname{accept} 48.0) \tag{3} \end{align*}$	M1 A1 A1 [12]

edexcel

Question Number	Scheme	Marks
Q8 (a) (i) (ii)	Con. of Mom: $\begin{align*} 3 m u-m u & =3 m v+m w \\ 2 u & =3 v+w \tag{1} \end{align*}$ N.L.R: (1) $-(2)$ $\begin{align*} \frac{1}{2}(u+u) & =w-v \\ u & =w-v \tag{2}\\ u & =4 v \\ v & =\frac{1}{4} u \end{align*}$ In (2) $\begin{align*} u & =w-\frac{1}{4} u \\ w & =\frac{5}{4} u \tag{7} \end{align*}$	$\begin{aligned} & \text { M1\#A1 } \\ & \text { M1\#A1 } \end{aligned}$ DM1\# A1 A1
(b)	$\begin{aligned} B \text { to wall: N.L.R: } \frac{5}{4} u \times \frac{2}{5} & =V \\ V & =\frac{1}{2} u \end{aligned}$	M1 A1ft (2)
(c)	B to wall: $\text { time }=4 a \div \frac{5}{4} u=\frac{16 a}{5 u}$ Dist. Travelled by $A=\frac{1}{4} u \times \frac{16 a}{5 u}=\frac{4}{5} a$ In t secs, A travels $\frac{1}{4} u t, B$ travels $\frac{1}{2} u t$ Collide when speed of approach $=\frac{1}{\mathbf{2}} u t+\frac{1}{4} u t$, distance to cover $=$ $4 a-\frac{4}{5} a$ $\therefore t=\frac{4 a-\frac{4}{5} a}{\frac{3}{4} u}=\frac{16 a}{5} \times \frac{4}{3 u}=\frac{64 a}{15 u}$ Total time $=\frac{16 a}{5 u}+\frac{64 a}{15 u}=\frac{112 a}{15 u}$	B1ft B1ft M1\$ DM1\$ A1 A1 (6)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA024472 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) J anuary 2011

GCE

GCE Mechanics M2 (6678) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code UA026580
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- ■ The second mark is dependent on gaining the first mark

Question Number	Scheme	Marks
1. (a)	Constant speed \Rightarrow Driving force $=$ resistance, $F=32$. $\begin{aligned} & P=F \times v=32 v=384 \\ & v=12\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ (3)
(b)	$P=F \times v \Rightarrow 384=F \times 9, F=\frac{384}{9}$ Their $F-32=120 a$, $a=0.089\left(\mathrm{~ms}^{-2}\right)$	M1 M1 A1 (3) [6]
2.	$\begin{align*} & \mathbf{I}=(-\mathbf{6 i}+\mathbf{8} \mathbf{j})=\mathbf{2}(\mathbf{v}-(5 \mathbf{i}+\mathbf{j})) \\ &-3 \mathbf{i}+4 \mathbf{j}=\mathbf{v}-5 \mathbf{i}-\mathbf{j} \\ & \mathbf{v}=2 \mathbf{i}+5 \mathbf{j} \\ & \mathrm{KE}= \frac{1}{2} \times 2 \times\|v\|^{2}=\left(\sqrt{2^{2}+5^{2}}\right)^{2}=29 \tag{J} \end{align*}$	M1A1 A1 M1 A1
3. (a)	$a=4 t^{3}-12 t$ Convincing attempt to integrate $v=t^{4}-6 t^{2}(+c)$ Use initial condition to get $v=t^{4}-6 t^{2}+8\left(\mathrm{~ms}^{-1}\right)$.	M1 A1 A1 (3)
(b)	Convincing attempt to integrate $s=\frac{t^{5}}{5}-2 t^{3}+8 t(+0)$ Integral of their v	M1 Alft (2)
(c)	Set their $v=0$ Solve a quadratic in t^{2} $\left(t^{2}-2\right)\left(t^{2}-4\right)=0 \Rightarrow$ at rest when $t=\sqrt{2}, t=2$	M1 DM1 A1 (3) [8]

Question Number	Scheme		Marks
4. (a)	$\begin{aligned} \text { Work done against friction }= & 50 \times \mu \mathrm{R} \\ = & 50 \times 1 / 4 \times 30 \cos 20^{\circ} \times 9.8 \end{aligned}$ Gain in GPE $=30 \times 9.8 \times 50 \sin 20^{\circ}$ $\begin{aligned} \text { Total work done } & =\text { WD against Friction }+ \text { gain in GPE } \\ & =8480(\mathrm{~J}), 8500(\mathrm{~J}) \end{aligned}$		M1 A1 M1 A1 DM1 A1 (6)
(b)	Loss in GPE = WD against friction + gain in KE $\begin{aligned} & 30 \times 9.8 \times 50 \sin 20^{\circ}=50 \times 1 / 4 \times 30 \times 9.8 \times \cos 20^{\circ}+1 / 2 \times 30 \times \mathrm{v}^{2} \\ & 1 / 2 \mathrm{v}^{2}=50 \times 9.8 \times\left(\sin 20^{\circ}-1 / 4 \cos 20^{\circ}\right), \\ & v=10.2 \mathrm{~m} \mathrm{~s}^{-1} . \end{aligned}$	3 terms -1 ee	M1 A2, 1, 0 DM1 A1 (5) [11]

Divide the shape into usable areas, e.g.:

Shape	C of mass	Units of mass
Rectangle 27 x 9	$(13.5,4.5)$	$243(6)$
Right hand triangle	$(30,3)$	$40.5(1)$
Top triangle	$(3,30)$	$40.5(1)$
Rectangle 9×18	$(4.5,18)$	$162(4)$

Mass ratios
Centres of mass B1
Take moments about AB :
M1
$6 \times 13.5+1 \times 30+4 \times 4.5+1 \times 3=132=12 \bar{x}$,
A $(2,1,0)$
$\bar{x}=11$ (cm) solve for x (or y) co-ord
$\bar{y}=11(\mathrm{~cm}) \quad$ using the symmetry
B1ft
Alternative:

Shape	C of mass	Units of mass
Small triangle	$(12,12)$	$.5 \times 18 \times 18$
Large triangle	$(15,15)$	$.5 \times 36 \times 36$

$\frac{1}{2} \times 36 \times 36 \times 12-\frac{1}{2} \times 18 \times 18 \times 15=\frac{1}{2}(36 \times 36-18 \times 18) \bar{X}$ etc.
(b)

| $\tan \theta=\frac{\bar{x}}{36-\bar{y}}$ |
| :--- | :--- |
| $\tan \theta=\frac{11}{25}=0.44$ |
| $\theta=24^{\circ}$ |

6. (a)	Using $s=u t+\frac{1}{2} a t^{2}$ Method must be clear $\mathbf{r}=(3 t) \mathbf{i}+\left(10+5 t-4.9 t^{2}\right) \mathbf{j}$ Answer given	M1 A1 A1 (3)
(b)	j component $=0: 10+5 t-4.9 t^{2}$ quadratic formula: $t=\frac{5 \pm \sqrt{25+196}}{9.8}=\frac{5 \pm \sqrt{221}}{9.8}$ $T=2.03(\mathrm{~s}), 2.0(\mathrm{~s}) \quad \begin{gathered}\text { positive solution only. }\end{gathered}$	M1 DM1 A1 (3)
(c)	Differentiating the position vector (or working from first principles) $\mathbf{v}=3 \mathbf{i}+(5-9.8 t) \mathbf{j}\left(\mathrm{ms}^{-1}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ (2)
(d)	At B the \mathbf{j} component of the velocity is the negative of the \mathbf{i} component: 5 $-9.8 t=-3,8=9.8 t,$ $t=0.82$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ (2)
(e)	$\mathbf{v}=3 \mathbf{i}-3 \mathbf{j}$, speed $=\sqrt{3^{2}+3^{2}}=\sqrt{18}=4.24\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	M1A1 (2) [12]

Question Number	Scheme	Marks
7.	Taking moments about A : $3 S=100 \times 2 \times \cos \alpha$	M1 A1
	Resolving vertically: $R+S \cos \alpha=100$	M1 A1
	Resolving horizontally: $S \sin \alpha=F$	M1 A1
	(Most alternative methods need 3 independent equations, each one worth M1A1. Can be done in 2 e.g. if they resolve horizontally and take moments about X then $R \times 2 \times \cos \alpha=S \times\left(3-2 \times \cos ^{2} \alpha\right)$ scores M2A2)	
	Substitute trig values to obtain correct values for F and R (exact or decimal equivalent). $\left(S=\frac{200 \sqrt{8}}{9}\right), R=100-\frac{1600}{27}=\frac{1100}{27} \approx 40.74, F=\frac{200 \sqrt{8}}{27} \approx 20.95 \ldots$	$\begin{aligned} & \text { DM1 } \\ & \text { A1 } \end{aligned}$
	$F \leq \mu R, 200 \sqrt{8} \leq \mu \times 1100, \quad \mu \geq \frac{200 \sqrt{8}}{1100}=\frac{2 \sqrt{8}}{11} .$	M1
		[10]

Question Number	Scheme	Marks
8. (a)	KE lost: $\frac{1}{2} \times m \times 36-\frac{1}{2} \times m \times v^{2}=64$ Restitution: $v=1 / 3 \times 6=2$ Substitute and solve for m : $\frac{1}{2} \times m \times 36-\frac{1}{2} \times m \times 4=64=16 \mathrm{~m}$ $\mathrm{m}=4 \quad$ answer given	M1A1 M1A1 DM1 A1 (6)
(b)	Conservation of momentum: $6-8=4 w-2 v$ their "2" Restitution: $v+w=1 / 3(2+3)$ their "2" $v=\frac{5}{3}-w$ Solve for $w:-2=4 w-2\left(\frac{5}{3}-w\right)=6 w-\frac{10}{3}$ $\begin{aligned} & \frac{4}{3}=6 w \\ & \left(w=4 / 18=2 / 9 \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ $w>0 \Rightarrow$ will collide with the wall again	M1A1ft M1A1ft DM1 A1 A1
		(7) [13]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA026580 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Mark Scheme (Results)

June 2011

GCE Mechanics M2 (6678) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028440
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

J une 2011 6678 Mechanics M2

Mark Scheme

Question Number	Scheme	Marks
1.	$\begin{aligned} & 12000=T V \\ & T-500-1000 g \sin \theta=0 \\ & V=\frac{12000}{500+1000 \times 9.8 \times \frac{1}{30}} \\ & V=15 \quad(\text { accept } 14.5) \end{aligned}$	M1 M1 A1 DM1 A1 (5) 5
2.	$\begin{aligned} 4 m u & =3 m x-m v \\ 4 u e & =x+v \\ 4 u & =3(4 u e-v)-v \\ 4 u & =12 u e-4 v \\ v & =(3 e-1) u \\ v>0 & \Rightarrow 3 e>1 \\ & \therefore e>\frac{1}{3} \quad * * \end{aligned}$	M1 A1 M1 A1 DM1 A1 DM1 A1 (8)

Question Number	Scheme	Marks
3. (a)	$\begin{aligned} & \mathbf{I}=m \mathbf{v}-m \mathbf{u} \\ & -4 \mathbf{i}+7 \mathbf{j}=0.5(\mathbf{v}-12 \mathbf{i}) \\ & 4 \mathbf{i}+14 \mathbf{j}=\mathbf{v} \\ & \text { Speed }=\sqrt{16+196}=\sqrt{212} \mathrm{~m} \mathrm{~s}^{-1} \quad(14.6 \text { or better }) \end{aligned}$	M1 A1 M1 A1 (4)
(b)	$\begin{aligned} \tan \theta & =\frac{7}{2} \\ \theta & =74.0 \ldots \\ \theta & =74^{\circ} \end{aligned}$	M1 A1ft (2)
(c)	$\text { Gain in K.E. }=\frac{1}{2} \times 0.5\left(212-12^{2}\right), \quad=17 \mathrm{~J}$	M1 A1 (2) 8

Question Number	Scheme	Marks
4. (a)	$\begin{aligned} & 8 \times 2 a+1 \times \frac{13}{3} a=9 \bar{X} \\ & \bar{x}=\frac{61}{27} a \end{aligned}$	B1 B1 M1 A1 (4)
(b)	$\begin{aligned} & \tan \phi=\frac{a}{\frac{61}{27} a}=\frac{27}{61} \\ & \left.\phi=23.87 \ldots=24^{\circ} \quad \text { (accept } 23.9\right), 0.417 \text { radians } \end{aligned}$	M1 A1 ft A1 (3)

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} & 0.5 g \times 2 \sin 30=\frac{1}{2} \times 0.5 u^{2}-\frac{1}{2} \times 0.5 \times 5^{2} \\ & \frac{1}{4} u^{2}=0.5 g+\frac{1}{2} \times 0.5 \times 5^{2} \end{aligned}$	M1 A1
		(4)
(b)	$\begin{aligned} & R=0.5 g \cos 30 \\ & F=0.5 g \cos 30 \times \mu \\ & \text { Work done by friction }=1.5 F \\ & \frac{1}{2} \times 0.5 \times 5^{2}=1.5 F+0.5 g \times 1.5 \sin 30 \\ & \mu=\frac{\frac{1}{2} \times 0.5 \times 5^{2}-0.5 g \times 1.5 \sin 30}{0.5 g \cos 30 \times 1.5} \end{aligned}$	B1 M1 M1 A1 A1
		(6) 10

Question Number	Scheme	Marks
7 (a)	$\begin{aligned} & \mathrm{M}(\mathrm{~A}) \quad 3 m g \times 2 a+3 m g x=T \cos \theta \times 4 a \\ &=\frac{12}{5} a T \\ & \frac{12}{5} a T=6 m g a+3 m g x \\ & T=\frac{25}{4} m g \quad \frac{12}{5} a \times \frac{25}{4} m g=6 m g a+3 m g x \\ & 15 a=6 a+3 x \\ & x=3 a \quad * * \end{aligned}$	M1 A2, 1,0 M1 A1
(b)	$\begin{aligned} \mathrm{R}(\rightarrow) \quad R & =T \sin \theta \\ & =\frac{25}{4} m g \times \frac{4}{5} \\ & =5 m g \quad * * \end{aligned}$	$\begin{array}{\|ll} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$
(c)	$\begin{aligned} & \mathrm{R}(\uparrow) \quad F+\frac{25}{4} m g \times \frac{3}{5}=3 m g+3 m g \\ & F=6 m g-\frac{15}{4} m g=\frac{9}{4} m g \\ & \mu=\frac{F}{R}=\frac{\frac{9}{4} m g}{5 m g}=\frac{9}{20} \end{aligned}$	M1 A2,1,0 DM1 A1

Question Number	Scheme	Marks
8. (a)	Horiz: $x=u \cos \alpha t$ Vert: $\begin{aligned} & y=u \sin \alpha t-\frac{1}{2} g t^{2} \\ & y=u \sin \alpha \times \frac{x}{u \cos \alpha}-\frac{1}{2} g \times \frac{x^{2}}{u^{2} \cos ^{2} \alpha} \\ & y=x \tan \alpha-\frac{g x^{2}}{2 u^{2} \cos ^{2} \alpha} \quad * * \end{aligned}$	B1 M1 DM1 A1 (4)
(b)	$\begin{aligned} & y=-7: \quad-7=\tan 45 x-\frac{g x^{2}}{2 \times 7^{2} \cos ^{2} 45} \\ & -7=x-\frac{9.8 x^{2}}{7^{2}} \\ & -7=x-\frac{x^{2}}{5} \\ & x^{2}-5 x-35=0 \\ & x=\frac{5 \pm \sqrt{25+4 \times 35}}{2} \\ & x=8.92 \text { or } 8.9 \end{aligned}$	M1 A1 M1 M1 A1 (5)
(c)	$\begin{aligned} & \text { Time to travel } 8.922 \mathrm{~m} \text { horizontally }=\frac{8.922}{7 \cos 45}=1.802 \ldots \mathrm{~s} \\ & v=\frac{8.922}{1.402} \\ & =6.36 \text { or } 6.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	M1 M1 A1 ft A1 (4)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA028440 J une 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Mark Scheme (Results)

January 2012

GCE Mechanics M2 (6678) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030773
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
\left(x^{2}+b x+c\right) & =(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
\left(a x^{2}+b x+c\right) & =(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=$.
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1 . $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

January 2012
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
$\mathbf{3}$ (a)		

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467

Fax 01623450481

Email publication.orders@edexcel.com
Order Code UA030773 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2012

GCE Mechanics M2
(6678) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA032678
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012

6678 Mechanics 2

Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
-All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the first 2 A or B marks affected are lost, and the subsequent A marks affected are treated as A ft; but manifestly absurd answers should never be awarded A marks.

General Principles for Mechanics Marking

Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
Omission or extra g in a resolution is accuracy error not method error.
Omission of mass from a resolution is method error.
Omission of a length from a moments equation is a method error.
Omission of units or incorrect units is not (usually) counted as an accuracy error.
DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF . Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question.
However, premature approximation should be penalised every time it occurs. MARKS MUST BE ENTERED IN THE SAME ORDER AS THEY APPEAR ON THE MARK SCHEME.

In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),......then that working can only score marks for that part of the question.

Accept column vectors in all cases.

Summer 2012

6678 Mechanics M2

Mark Scheme

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
2(a)	$3 m .2 u-4 m u=3 m v_{1}+4 m v_{2}$		
		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	CLM. Need all terms. Condone sign slips. Correct but check their directions for $v_{1} \& v_{2}$.
			Impact law. Must be used the right way round, but condone sign
	$e(2 u+u)=-v_{1}+v_{2}$	M1	slips.
		A1	Directions of $v_{1} \& v_{2}$ must be consistent between the two equations. (Ignore the diagram if necessary)
	$\frac{u(2+9 e)}{7}=v_{2}$	DM1	Eliminate v_{1} to produce an equation in v_{2} only. Dependent on both previous M marks - must be using both equations.
		A1 (6)	DO NOT accept the negative. The question asks for speed.
	$v_{1}=\frac{2 u(1-6 e)}{7}$	(6)	
(b)		M1	Use the work from (a) or restart to find v_{1} or λv_{1} for a constant λ. If using work from (a) this mark is dependent on the first 2 M marks.
		A1	a.e.f. Correct for their direction. Allow for λv_{1}
	$v_{1}<0 \Rightarrow e>\frac{1}{6}$	DM1	An appropriate inequality for their v_{1} (seen or implied) - requires previous M1 scored.
			Work 2 ,
		A1	Accept $\frac{2}{12}$. Answer must follow from correct work for v_{1}
	$1 \geq e>\frac{1}{6}$	B1	For (their value) <e
			SR: from $v_{1} \leq 0$ could score M1A0B1
		(5)11	

Question Number	Scheme	Marks	Notes
3 (a) (b)	$M(A), F .4 \sin 40^{\circ}=5 g .2 \cos 25^{\circ}$ $F=35$ $F \cos 75^{\circ} \pm Y=5 g$ $Y=40 \text {; }$ UP	M1 A1 A1 A1 (4) M1 A1 A1 A1 (4) 8	A complete method to find F, e.g. take moments about A. Condone $\sin /$ cos confusion. Requires correct ratio of lengths. Correct terms with at most one slip All correct 35 or 34.5 ($>3 \mathrm{sf}$ not acceptable due to use of 9.8, but only penalise once in a question) Resolve vertically. Need all three terms but condone sign errors. Must be attempting to work with their 75° or 15°. Correct equation (their F) 40 or 40.1 Apply ISW if the candidate goes on to find R. cso (the Q does specifically ask for the direction, so this must be clearly stated)
(b)	$\begin{aligned} & \text { OR1: } 4 m \cos 25 \times Y \\ & =5 g \times 2 m \cos 25+F \cos 15 \times 4 m \sin 25 \\ & \quad \text { etc. } \\ & \text { OR2: } R \cos \alpha=F \cos 40+5 g \cos 65 \\ & \quad R \sin \alpha+F \sin 40=5 g \cos 25 \\ & \quad R=52.1, \alpha=25.3^{\circ} \\ & \quad Y=R \sin (25+\alpha) \end{aligned}$ Etc.	M1 A1 M1A1	Taking moments about the point vertically below B and on the same horizontal level as A.(Their F) Resolve parallel \& perpendicular to the rod Solve for R, α Need a complete strategy to find Y for M1.

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes

PhysicsAndMathsTutor.com

(c)
$200 d=\frac{1}{2} 400.12^{2}-400 g d \sin \alpha$

$$
d=60(\mathrm{~m})
$$

Use of work-energy. Must have all three terms. Do not accept duplication of terms, but condone sign errors.
Equation in only one unknown, but could be vertical distance.
At most one error in the equation
All correct in one unknown
Solve for d - dependent on M for work-energy equation.
only
(5)

For vertical distance $\left(=\frac{60}{14}=4.29\right)$ allow $3 / 5$

PhysicsAndMathsTutor.com

OR

$50=u \cos \alpha t \quad$ or $50=u_{H} t$
$49\left(\frac{50}{u_{H}}\right)^{2}-140\left(\frac{50}{u_{H}}\right)-525=0$
$525\left(u_{H}\right)^{2}+140\left(u_{H}\right)-122500=0$
Solve for u_{H}
$u_{H}=10$
etc.
(c) $\quad \tan O B A=\frac{52.5}{50}=1.05$

$$
v_{V}=1.05 \times 10=10.5
$$

$(\uparrow),-10.5=14-g t$

$$
t=2.5
$$

First 3 marks for the quadratic as above.
Used in their quadratic

Correct quadratic in u_{H}
Dependent on the M mark for setting up the initial quadratic equation in t .
only
Complete as above.
Correct direction o.e. (accept reciprocal)
Use trig. with their u_{H} and correct interpretation of direction to find the vertical component of speed.
Working with distances is M0. (condone $10 \div 1.05$)
Use suvat to form an equation in t. Dependent on the preceding M.

Correct equation for their u_{H}.
For incorrect direction give A0 here.
only

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA032678 Summer 2012

Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

edexcel "

Mark Scheme (Results)

January 2013

GCE Mechanics M2 (6678/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

January 2013
Publications Code UA034765
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.
3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. I gnore wrong working or incorrect statements following a correct answer.
8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

	0	1
$a M$		\bullet
$a A$	\bullet	
$b M 1$		\bullet
$b A 1$	\bullet	
bB	\bullet	
$b M 2$		\bullet
$b A 2$		\bullet

J anuary 2013

6678 M2

Mark Scheme

Q.	Scheme		Marks
1. (a)	$2 \mathrm{~kg}$	M1	
	$5 \bar{y}-2 \times 0.25(+0)$$\bar{y}=\frac{2 \times 0.25}{5}=0.1$	A1	Moments equation with lengths $1 / 4,1$ and (ratio of) masses 2, 3. Allow moments about a parallel axis Use of length for mass is M0.
			For distance from BC
(b)		M1	
	$\tan \theta=\frac{0.6}{0.5-0.1}$ $\theta=\tan ^{-1}\left(\frac{6}{4}\right)=56.3^{\circ}=56^{\circ}$	A1ft	Must suspend from A. Use of tan with 0.6 and $0.5-\bar{y}$ Could be wrong way up. Must be using 0.6
	$\theta=\tan ^{-1}\left(\frac{6}{4}\right)=56.3^{\circ}=56^{\circ}$	A1	Correct way up. ft their \bar{y}.
			Accept awrt 56.3

Q.	Scheme		Marks
2 (a)	$0.4 \mathrm{~m} \mathrm{~s}^{-2}$ H	B1	
	$T=\frac{30000}{20} \quad(=1500)$	M1	Use of $P=F v$
	$T-R=1800 a$	A1	Equation of motion. Need all 3 terms. Condone sign errors
	$\begin{aligned} & T-R=1800 \times 0.4 \\ & R=1500-1800 \times 0.4 \\ & =780 \end{aligned}$		Equation correct (their T)
		A1	Only
(b)	,	M1	
	$T-1800 \mathrm{~g} \sin \alpha-R=0$	A1	Equation of motion. Need all 3 terms. Weight must be resolved. Condone cos for sin. Condone sign errors Correct equation. Allow with R not substituted or with their R.
	$T=1800 \times \frac{1}{12} g+780$	DM1	
	$\text { Power }=\left(1800 \times \frac{1}{12} g+780\right) \times 20$	A1	Use of $P=T v$
		A1	Correctly substituted equation (for their R)
	$=45000 \mathrm{~W}$ or 45 kW		

Q	Scheme		Marks
(a) (b)	$\begin{aligned} & t=\frac{5}{4} \\ & \mathbf{r}=\left(2 t^{2}-5 t\right) \mathbf{i}+3 t \mathbf{j}(+\mathbf{c}) \end{aligned}$	M1	1.25 Integrate the velocity vector
	$\begin{aligned} & t=0 \quad 2 \mathbf{i}+5 \mathbf{j}=\mathbf{c} \\ & \mathbf{r}=\left(2 t^{2}-5 t\right) \mathbf{i}+3 t \mathbf{j}+(2 \mathbf{i}+5 \mathbf{j}) \end{aligned}$	A1 DM1 A1	NB Also correct to use suvat with $\boldsymbol{a}=4 \mathbf{i}$ and $\boldsymbol{u}=-5 \mathbf{i}+3 \mathbf{j}$. Correct Use \mathbf{r}_{0} to find C oe
	$\left(2 t^{2}-5 t+2\right) \mathbf{i}+(3 t+5) \mathbf{j}$	B1	
(c)	$\begin{aligned} & \mathbf{r}_{Q}=11 \mathbf{i}+2 \mathbf{j}-2 t \mathbf{i}+c t \mathbf{j} \\ & (11-2 t) \mathbf{i}+(2+c t) \mathbf{j} \end{aligned}$		Correct \mathbf{j} component of $\mathbf{r}_{\mathbf{Q}}$ Do not actually require the whole thing - can answer the Q by considering only the \mathbf{j} component.
	$\begin{aligned} & \mathbf{r}_{P}=\left(2 t^{2}-5 t+2\right) \mathbf{i}+(3 t+5) \mathbf{j} \\ & \mathbf{r}_{Q}=\mathbf{r}_{P}=d \mathbf{i}+14 \mathbf{j} \end{aligned}$	$2 t^{2}-5 t$	
	$3 t+5=14$ $2 l^{2}-\mathbf{3} t-9$ $(2 l+3)(l-\mathbf{3})=\mathbf{0}$ $t=3$ $t=3$ A 1 ft	M1 A1	Form an equation in t only
	$\begin{aligned} & 2+c t=14 \Rightarrow c=4 \\ & d=11-2 \times 3=5 \quad \text { or } \\ & d=2 \times 3^{2}-5 \times 3+2 \Rightarrow d=5 \end{aligned}$	A1 ft	Their t Their t
	Alt: $2 t^{2}-5 t+2=11-2 t=d \Rightarrow t=\frac{11-d}{2}$		
	$\begin{aligned} & 2\left(\frac{11-d}{2}\right)^{2}-5\left(\frac{11-d}{2}\right)+2=d \\ & d^{2}-19 d+70=0=(d-5)(d-14) \end{aligned}$		

Q.	Scheme	Marks	
6 (a)	$\begin{aligned} & 2=-2 u \sin \theta+\frac{1}{2} g \times 4 \\ & \left(-2=u \sin \theta t-\frac{\mathbf{1}}{\mathbf{2}} g t^{2}\right) \\ & u \sin \theta=g-1 \\ & 2 u \cos \theta=8 \quad(u \cos \theta=4) \\ & \quad(u \cos \theta t=\mathbf{8}) \\ & \tan \theta=\frac{g-1}{4}=2.2 \quad * \end{aligned}$	M1	Vertical distance. Condone sign errors. Must have used $t=2$, but could be using $u_{y}=u \sin \theta$
		A1	All correct
		B1	Horizontal distance. Accept $u_{x}=4$ o.e.
		M1	Divide to obtain expression for $\tan \theta$
		A1	Given answer It is acceptable to quote and use the equation for the projectile path. Incorrect equation is $0 / 5$.
(b)	$u \cos \theta=4$ 4	M1	Use the horizontal distance and θ to find u 9.67 or 9.7
	$u=\frac{4}{\cos \theta}=9.66 \ldots=9.7$	A1	$\mathrm{NB} \theta=65.6^{\circ}$ leading to 9.68 is an accuracy penalty.
	OR use components from (a) and Pythagoras.		
(c)	$\begin{aligned} & 6=(1-g) T+\frac{1}{2} \times 9.8 T^{2} \\ & 4.9 T^{2}-8.8 T-6=0 \end{aligned}$	M1	Equation for vertical distance $= \pm \mathbf{6}$ to give a quadratic in T. Allow their u_{y}
	$T=\frac{8.8 \pm \sqrt{[(-) 8.8]^{2}+24 \times 4.9}}{9.8}$	DM1	Solve a 3 term quadratic
	$T=2.323 \ldots=2.32$ or 2.3	A1	2.3 or 2.32 only
(d)	$v^{2}=8.8{ }^{2}+2 g \times 6$ or $v=-8.8+g T$	M1	Use suvat to find vertical speed
		A1	Correct equation their u_{y}, T
	$\begin{aligned} & v=13.96 \ldots \\ & \text { Horiz speed }=4 \end{aligned}$		
		DM1	Correct trig. with their vertical speed to find the required angle.
		A1	Correct equation
	$\alpha=74.01 \ldots=74^{\circ}$	A1	74° or $74.0^{\prime \prime}$. Allow 106.
	Alternative: $\frac{1}{2} m(9.6664)^{2}+6 m g=\frac{1}{2} m v^{2}$	M1	Conservation of energy to find speed
	$v=14.52719 \ldots$	$\begin{aligned} & \text { A1 } \\ & \text { DM1 } \end{aligned}$	Correct method for α
	$\cos \alpha=\frac{4}{14.5}$	A1	
	$\alpha=74.01 \ldots=74^{\circ}$	A1	Allow 106

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467

Fax 01623450481

Email publication.orders@edexcel.com
Order Code UA034765 January 2013

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

edexcel "

Mark Scheme (Results)

Summer 2013

GCE Mechanics 2 (6678/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036424
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

General Rules for Marking Mechanics

- Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme	Marks	Notes
1.			
(a)	$F-150-300=1500 \times 0.2$	M1	Needs total mass and both resistances. Condone sign errors
		A1	Correct unsimplified equation
	$F=750$	A1	
	$P=750 \times 20=15000$ watts	M1	Independent M. 20 x their driving force
		A1	
	(5)		
(b)	Use their mass as a guide to which of these two alternatives is being used.		
	For caravan: $T-150=600 \times 0.2$	M1	Requires all forces acting on caravan. Condone sign error(s)
	$T=270 \mathrm{~N}$	A1 (2)	
Or (b)	For car: $F-T-300=900 \times 0.2$	M1	Requires all forces acting on car. Condone sign error(s)
	$T=270 \mathrm{~N}$	A1 (2)	
		[7]	

Question Number	Scheme	Marks	Notes
$\mathbf{2 .}$	NB This question tells candidates to use work-energy - suvat approach scores $0 / 6$		
	$1.24 \times 8 ; \quad 0.2 g \times 8 ; \quad \frac{1}{2} 0.2 .20^{2}$ or $\frac{1}{2} 0.2 . v^{2}$	B1;B1;B1	B1 for each term seen or implied $9.92,15.68,40$ or $0.1 v^{2}$
	$1.24 \times 8=\frac{1}{2} 0.2 .20^{2}-\frac{1}{2} 0.2 . v^{2}-0.2 g \times 8$	M1	Condone sign errors but all terms should be present
		A1	Correct equation
	$v=12$	A1	
		$\mathbf{(6)}$	
		[6]	

Question Number	Scheme	Marks	Notes
3.			
(a)	$\frac{1}{2} t^{2}-3 t+4=0$	M1	Set $v=0$
	$t^{2}-6 t+8=0$		
	$(t-2)(t-4)=0$	DM1	Solve for v
	$t=2 \mathrm{~s}$ or 4 s	A1 A1	
		(4)	
(b)	$\int \frac{1}{2} t^{2}-3 t+4 \mathrm{~d} t$	M1	Integration - majority of powers increasing
	$=\frac{1}{6} t^{3}-\frac{3}{2} t^{2}+4 t(+C)$	A1	Correct (+C not required)
	$s=\int_{0}^{2} \frac{1}{2} t^{2}-3 t+4 \mathrm{~d} t-\int_{2}^{4} \frac{1}{2} t^{2}-3 t+4 \mathrm{~d} t$	DM1	Correct strategy for finging the required distance. Follow their " 2 ". Subtraction/swap limits/modulus signs
	$=\left[\frac{1}{6} t^{3}-\frac{3}{2} t^{2}+4 t\right]_{0}^{2}-\left[\frac{1}{6} t^{3}-\frac{3}{2} t^{2}+4 t\right]_{2}^{4}$		
	$=\frac{8}{6}-6+8-\left(\frac{64}{6}-24+16-\left(\frac{8}{6}-6+8\right)\right)$	A1	Correct unsimplified
	$=\frac{10}{3}-\frac{8}{3}+\frac{10}{3}$		
	$=4$	A1	
		(5)	
		[9]	

Question Number	Scheme	Marks	Notes
4.			
(a)	$A C=4 a \tan 60^{\circ}=4 a \sqrt{3}$.	M1 A1	$\text { Or } \frac{4 a}{\tan 30} \text { or } \sqrt{(8 a)^{2}-(4 a)^{2}}$
		(2)	
(b)	use of $F=\mu R$ at either A or C	M1	
	3 independent equations required. Award M1A1 for each in the order seen. If more than 3 relevant equations seen, award the marks for the best 3 .		
	$M(A), \quad R_{C} \cdot 4 a \sqrt{3}=W \cdot 3 a \sqrt{3} \cos 60^{\circ}$	M1 A1	$R_{C}=\frac{3 W}{8}$
	$(\uparrow), \quad R_{A}+R_{C} \cos 60^{\circ}+F_{C} \cos 30^{\circ}=W$	M1 A1	$R_{A}=\frac{5 W}{8}$
	$(\rightarrow), \quad F_{A}-R_{C} \cos 30^{\circ}+F_{C} \cos 60^{\circ}=0$	M1 A1	$F_{A}=R_{C} \frac{\sqrt{3}}{3}$
	$\mathrm{M}(\mathrm{C}) a \sqrt{3} \cos 60 W+F_{A} \cdot 4 a \sqrt{3} \sin 60=R_{A} \cdot 4 a \sqrt{3} \cos 60$		
	Parallel: $F_{A} \cos 60+R_{A} \cos 30+F_{C}=W \cos 30$		
	Perpendicular: $R_{C}+R_{A} \cos 60=F_{A} \cos 30+W \cos 60$		
	solving to give $\mu=\frac{\sqrt{3}}{5} ; 0.346$ or 0.35 .	$\begin{aligned} & \text { DM1 } \\ & \text { A1 } \end{aligned}$	Equation in μ only. Dependent on 4 M marks for their equations.
	Reactions in the wrong direction(s) - check carefully		
		(9)	
		[11]	

Question Number	Scheme	Marks	Notes		
5. (a)	$2 m u=2 m v_{P}+m v_{Q}$	M1	CLM. Needs all 3 terms of corrwct form but condone sign slips		
		A1	Correct equation		
	$\frac{3}{4} m u^{2}=\frac{1}{2} 2 m v_{P}{ }^{2}+\frac{1}{2} m v_{Q}{ }^{2}$	M1	KE after impact. 3 terms of correct form		
	$3 v_{Q}{ }^{2}-4 u v_{Q}+u^{2}=0$ or $12 v_{P}{ }^{2}-16 u v_{P}+5 u^{2}=0$	A1	Correct equation		
	$v_{Q}=\frac{u}{3}, v_{P}=\frac{5 u}{6}$ or $v_{Q}=u, v_{P}=\frac{u}{2}$	M1	Use CLM equation to form quadratic in v_{P} or v_{Q}		
	$v_{Q}=u$	A1	Correct equation		
	$\ldots \ldots \operatorname{since} v_{Q}>v_{P}$	DM1	Solve for a value of v_{Q}. Dependent on the previous M1.		
		A1	A v_{Q}, v_{P} pair correct or two correct values for v_{Q}	,	Select solution from a choice of two.
:---					
Dependent on all 4 M marks.					
Correct justification					

Question Number	Scheme	Marks	Notes
6. (a)	ABC ADE BCED		
	$\begin{array}{lll}M & \frac{4 M}{9} & \frac{5 M}{9}\end{array}$	B1	Correct mass ratios
	$\frac{h}{3} \quad\left(\frac{h}{3}+\frac{1}{3} \frac{2 h}{3}\right) \quad \bar{y}$	B1	Correct distance ratios
		M1	Moments equation. Condone sign slip
	$M \frac{h}{3}-\frac{4 M}{9} \frac{5 h}{9}=\frac{5 M}{9} \bar{y}$	A1	
	$\bar{y}=\frac{7 h}{45} *$ Answer Given*	A1	
(b)		M1	Moments equation for the folded shape. Requires correct mass ratios, and terms of correct structure.
	$\frac{5 M}{9} \frac{7 h}{45}+\frac{4 M}{9}\left(\frac{h}{3}-\frac{1}{3} \times \frac{2 h}{3}\right)=M \bar{x}$	A1 A1	-1 each error $\quad \frac{h}{9}$
	$\bar{x}=\frac{11 h}{81}$	A1	
(c)	$\begin{equation*} \tan \alpha=\frac{\frac{h}{3}-\bar{x}}{\frac{2 a}{3}} \tag{4} \end{equation*}$	M1 A1 ft	Use of tan in correct triangle. Allow reciprocal. Correct unsimplified for their \bar{x}
	$=\frac{8 h}{27 a}$	$\begin{aligned} & \hline \text { DM1 } \\ & \text { A1 } \end{aligned}$	Substitute and simplify
		(4)	
		[13]	

Question Number	Scheme	Marks	Notes
7. (a)	$(\rightarrow) \sqrt{27 a g} \cos \theta \cdot t=9 a$	M1	Horizontal motion. Condone trig confusion.
		A1	
	($\uparrow) \sqrt{27 a g} \sin \theta \cdot t-\frac{1}{2} g t^{2}=6 a$	M1	Vertical motion. Condone sign errors and trig confusion.
		A1	
	(\uparrow) $\sqrt{27 a g} \sin \theta \cdot \frac{9 a}{\sqrt{27 a g} \cos \theta}-\frac{1}{2} g\left(\frac{9 a}{\sqrt{27 a g} \cos \theta}\right)^{2}=6 a$	DM1	Substitute for t (unsimplified). Dependent on both previous M marks
	$9 a \tan \theta-\frac{1}{2} g .81 a^{2} \frac{\left(1+\tan ^{2} \theta\right)}{27 a g}=6 a$	DM1	Express all trig terms in terms of tan. Dependent on preceding M .
	$\tan ^{2} \theta-6 \tan \theta+5=0$	A1 (7)	
(b)	$\tan ^{2} \theta-6 \tan \theta+5=0$		
	$(\tan \theta-1)(\tan \theta-5)=0$	M1	Method to find one root of the quadratic
	$\tan \theta_{2}=1$ or $\tan \theta_{1}=5$	A1 A1 (3)	
(c)	$t=\frac{9 a}{\sqrt{27 a g} \cos \theta}=\frac{9 a}{\sqrt{27 a g}} \times \frac{\sqrt{26}}{1}$	M1 A1ft	Use $\tan \theta=$ their 5 to find t . Correct unsimplified. Correct $\cos \theta$ for their $\tan \theta$
	$=\sqrt{\frac{81 a^{2} .26}{27 a}}=\sqrt{\frac{78 a}{g}} *$ Answer given*	A1 (3)	Given answer \rightarrow evidence of working is required

Question Number	Scheme	Marks	Notes
Question 7 continued...			
(d)	$\frac{1}{2} m\left(27 a g-v^{2}\right)=m g 6 a$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Conservation of energy. Requires all 3 terms. Condone sign error Correct equation
	$v=\sqrt{15 a g}$	A1 (3)	
Or (d)	$v^{2}=(\sqrt{27 a g} \cos \theta)^{2}+\left(\sqrt{27 a g} \sin \theta-g \cdot \sqrt{\frac{78 a}{g}}\right)^{2}$	M1	Horizontal and vertical components and Pythagoras. Condone trig confusion.
	$=\left(\frac{27 a g}{26}\right)+\left(5 \sqrt{\frac{27 a g}{26}}-\sqrt{78 a g}\right)^{2}\left(=a g\left(\frac{27}{26}+\frac{363}{26}\right)\right)$	A1	Correctly substituted
	$v=\sqrt{15 a g}$	A1 (3)	
		[16]	

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036424 Summer 2013

lywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

Mark Scheme (Results)
Summer 2013

GCE Mechanics 2 (6678/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2013

Publications Code UA036421
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PhysicsAndMathsTutor.com

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Rules for Marking Mechanics

- Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),......then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme	Marks	Notes
1.	Use of $\mathbf{I}=\mathrm{mv}$-mu $\begin{aligned} 2 \mathbf{v} & =(3 \mathbf{i}+6 \mathbf{j})+2(\mathbf{i}-4 \mathbf{j}) \\ \mathbf{v} & =2.5 \mathbf{i}-\mathbf{j} \\ & \text { Speed }=\sqrt{2.5^{2}+1^{2}}=\sqrt{7.25}\left(=2.69\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\right) \end{aligned}$	M1 A1 A1 M1 A1 [5]	Must be subtracting. Condone subtraction in the wrong order Correct unsimplified equation ($=5 \mathbf{i} \mathbf{-} \mathbf{j}$) Use of correct Pythagoras with their \mathbf{v} Exact form or 2s.f. or better. Watch out for fortuitous answers from $2.5 \mathbf{i}+\mathbf{j}$.

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
2 a	$\begin{aligned} \text { Work done } & =15 \mu R=15 \times 0.4 \times 3 g \cos 20^{\circ} \\ & =18 g \cos 20=166(\mathrm{~J}) \end{aligned}$	M1 M1 A1 [3]	$F_{\max }=\mu \times 3 g \cos 20(11.05) . R$ must be resolved but condone trig confusion. $15 \times$ their $F_{\text {max }}$. Independent M $15 \times F_{\text {max }}+\ldots$. is M0 or 170 (J)
2b	Energy: WD against $F+$ GPE + final $\mathrm{KE}=$ initial KE $\begin{aligned} & \text { their WD }+3 g \sin 20^{\circ} \times 15+\frac{1}{2} 3 v^{2}=\frac{1}{2} 3 \times 20^{2} \\ & \qquad v=13.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	M1A2ft A1 [4]	Must include all four correct terms (including resolving). Condone sign errors and trig confusion. Any sign errors in the KE terms count as a single error. Follow their WD -1ee Follow their WD or 14
Or 2b	$3 a=-0.4 \times 3 g \cos 20+3 g \sin 20$ and use of $v^{2}=u^{2}+2 a s$ $\begin{aligned} v^{2}=20^{2}+2 \times a \times 15(& =188.93 \ldots) \\ v & =13.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	M1 A1ft A1ft A1 [4]	Complete method. Their $F_{\max }+$ component of weight A correct equation with their $F_{\text {max }}$. Allow for $a=+7.03 \ldots$ acting down the slope $a=-7.035 \ldots$ Correct equation for their a or $14\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
3 a	$\begin{aligned} v=0 & =2 t^{2}-14 t+20 \\ & =2 \quad t-2 \quad t-5 \\ t=2 & \text { or } t=5 \end{aligned}$	$\begin{array}{\|lr\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \hline \end{array}$	Set $v=0$ Solve for t
	There are many different approaches to part (b). The allocation of the two M marks is M1: A method to find the time when the velocity is a minimum M1: Evaluate the speed at that time		
e.g. b	$\begin{aligned} & t=0, \quad v=20\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & a=4 t-14=0 \\ & t=\frac{7}{2}, \quad v=2 \times \frac{3}{2} \times \frac{-3}{2}=\frac{-9}{2} \\ & \text { Max speed }=20 \mathrm{~ms}^{-1} \end{aligned}$		Must see ± 4.5 Clearly stated \& correct conclusion. Depends on the two M marks. From correct solution only.
balt1	$t=0, \quad v=20\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Sketch with symmetry about their $t=3.5$ v (their 3.5) -4.5 Max speed $=20 \mathrm{~ms}^{-1}$	$\begin{array}{lll}\text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & & {[5]}\end{array}$	Evaluate v at min. Correct work Clearly stated \& correct conclusion. Depends on the two M marks. From correct solution only.
b alt 2	$t=0, v=20\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Justification of minimum or tabulate sufficient values to confirm location Evaluate v at min. Correct work Correct conclusion. Depends on the two M marks	B1 M1 M1 A1 A1 	Clearly stated \& from correct solution only.

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
b alt 3	$t=0, v=20\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Complete the square as far as $\left(t-\frac{7}{2}\right)^{2}$ $2\left(t-\frac{7}{2}\right)^{2}-\frac{9}{2}$ $\text { Max speed }=20 \mathrm{~ms}^{-1}$	B1 M1 M1A1 A1 [5]	Clearly stated \& correct conclusion. Depends on the two M marks. From correct solution only.
c	$\begin{aligned} & \int 2 t^{2}-14 t+20 \mathrm{~d} t=\frac{2}{3} t^{3}-7 t^{2}+20 t(+C) \\ & \text { Distance }=\left[\frac{2}{3} t^{3}-7 t^{2}+20 t\right]_{0}^{2}-\left[\frac{2}{3} t^{3}-7 t^{2}+20 t\right]_{2}^{4} \\ & \quad=2 \times\left[\frac{2}{3} t^{3}-7 t^{2}+20 t\right]^{2}-\left[\frac{2}{3} t^{3}-7 t^{2}+20 t\right]_{4} \\ & \quad=2\left[\frac{16}{3}-7 \times 4+40\right]-\left[\frac{2 \times 64}{3}-7 \times 16+80\right]=24(\mathrm{~m}) \end{aligned}$	M1 A1 M1 A1 A1 [5]	Integration. Need to see majority of powers going up All correct. Condone C missing Correct method to find the distance, for their 2 Correct unsimplified

Question Number					Marks

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
4b	In 4(b) the first two marks are M1: Indentify a triangle, with one angle correct, and attempt to A1ft: 2 sides correct, follow their answer to (a) DM1: Work sufficient to be able to go on to find the required a A1ft: follow their answer to (a) DM1: Find the required angle. Dependent on the preceding M1 A1 Correct answer for example \qquad $\begin{aligned} & 2 \cos 30=\sqrt{3}, \quad " 0.5 "+2 \sin 30=1.5 \\ & \tan \theta=\frac{\text { their } 1.5}{\text { their } \sqrt{3}} \end{aligned}$ $\text { Required angle }=\theta-30=\tan ^{-1} \frac{1.5}{\sqrt{3}}-30=40.89 \ldots-30=10.9^{\circ}$	d the leng Depen	of two sides nt on the preceding M1
		M1A1ft	Their 0.5 \& their $\sqrt{ } 3$
		DM1 A1ft	Use of tan in a right angled triangle. Accept the reciprocal Correct for their angle. Ft their 0.5
		$\begin{aligned} & \text { A1ft } \\ & \text { DM1 } \end{aligned}$	Correct strategy to find required angle e.g. " θ " -30° or $90^{\circ}-30^{\circ}-" \theta^{\prime \prime}$
		$\begin{aligned} & \text { A1 } \\ & {[6]} \end{aligned}$	

PhysicsAndMathsTutor.com

Question Number 4balt	Scheme SAS in a relevant triangle $\begin{aligned} & d^{2}=2^{2}+0.5^{2}-2 \times 2 \times 0.5 \cos 120=5.25 \\ & \frac{\sin \theta}{0.5}=\frac{\sin 120}{\sqrt{5.25}} \\ & \theta=10.9^{\circ} \end{aligned}$	Marks M1A1ft DM1 A1ft DM1 A1 [6]	Notes Their 0.5 Correct cosine rule. Correct equation. Their 0.5

Question Number	Scheme	Marks	Notes
5 a	Moments about A: $\begin{aligned} & b F=a \cos \theta m g+2 a \cos \theta m g(=3 a \cos \theta m g) \\ & F=\frac{3 a m g \cos \theta}{b} \text { *Answer given* } \end{aligned}$	M1 A2 A1 [4]	Moments about A. Requires all three terms and terms of correct structure (force x distance). Condone consistent trig confusion -1 each error
5b	$\begin{aligned} & \rightarrow: \quad H=F \sin \theta=\frac{3 a m g \cos \theta \sin \theta}{b} \\ & \uparrow: \quad 2 m g= \pm V+F \cos \theta \\ & \pm V=2 m g-\frac{3 a m g \cos \theta}{b} \times \cos \theta\left(=2 m g-\frac{3 a m g \cos ^{2} \theta}{b}\right) \end{aligned}$		Resolve horizontally. Condone trig confusion RHS correct. Or equivalent. Resolve vertically. Condone sign error and trig confusion Correct equation RHS correct. Or equivalent

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
5c	$\begin{aligned} & \frac{2 m g-\frac{3 a m g \cos ^{2} \theta}{b}}{\frac{3 a m g \cos \theta \sin \theta}{b}}=\tan \theta \\ & \frac{2 b-3 a \cos ^{2} \theta}{3 a \cos \theta \sin \theta}=\frac{\sin \theta}{\cos \theta} \\ & \Rightarrow 2 b-3 a \cos ^{2} \theta=3 a \sin ^{2} \theta \Rightarrow 2 b=3 a, \frac{a}{b}=\frac{2}{3} \end{aligned}$	M1 A1 DM1 A1	Use of tan, either way up. V, H, F substituted. Correct for their components in θ only Simplify to obtain the ratio of a and b, or equivalent
5c alt 2	The centre of mass of the combined rod + particle is $\frac{3}{2} a$ from A 3 forces in equilibrium must be concurrent $\Rightarrow b=\frac{3}{2} a$ $\Rightarrow \frac{a}{b}=\frac{2}{3}$	M1A1 M1 A1 [4]	Not on the spec, but you might see it.
alt c 3	R acts along the rod, so resolve forces perpendicular to the rod. $\begin{aligned} & F=m g \cos \theta+m g \cos \theta \\ & 2 m g \cos \theta=\frac{3 a m g \cos \theta}{b} \end{aligned}$ $\Rightarrow \frac{a}{b}=\frac{2}{3}$	M1 A1 DM1 A1 [4]	Resolve and substitute for F Eliminate θ

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
alt c 4	R acts along the rod. Take moments about C $m g \cos \theta \quad 2 a-b=m g \cos \theta \quad b-a$ $2 a-b=b-a, \quad \Rightarrow \frac{a}{b}=\frac{2}{3}$	M1 A1	Moments about B gives $2 a-b \quad F=a m g \cos \theta$ and substitute for F DM1A1
c alt 5	Resultant parallel to the rod $\Rightarrow R=2 m g \sin \theta$ And $V^{2}+H^{2}=R^{2}$ $2 m g \sin \theta^{2}=\left(\frac{3 a m g \cos \theta \sin \theta}{b}\right)^{2}+\left(2 m g-\frac{3 a m g \cos ^{2} \theta}{b}\right)^{2}$ Eliminate θ $\Rightarrow \frac{a}{b}=\frac{2}{3}$	M1	Substitute for V, H and R in terms of θ

Question Number	Scheme	Marks	Notes
6	Conservation of energy: $\begin{aligned} & \frac{1}{2} m u^{2}+m g \times 8=\frac{1}{2} m \quad 2 u^{2} \\ & m u^{2}+16 m g=4 m u^{2} \\ & 16 m g=3 m u^{2}, \quad u=\sqrt{\frac{16 g}{3}} \\ & u=7.2 \end{aligned}$	M1 A2-1ee DM1 A1 [5]	Energy equation must contain the correct terms, but condone sign error. Correct unsimplified Solve for u Accept 7.23. Accept $\sqrt{\frac{16 g}{3}}$
6b	Vertical distance: $-8=u \sin \theta \times 2-\frac{g}{2} \times 4$ $\begin{aligned} & \sin \theta=\frac{2 g-8}{2 u}=0.802 \ldots \\ & \theta=53.3^{\circ} \end{aligned}$	M1 A2-1ee A1 [4]	Condone sign errors or trig error. u must be resolved. Correct equation for their u. or 53°
6 c	Min speed at max height, i.e. $u \cos \theta$ $=4.3\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$		Condone consistent trig confusion with part (b) or $4.32\left(\mathrm{~ms}^{-1}\right)$

Question Number	Scheme	Marks	Notes
7 a	CLM: $2 m u=2 m v+3 m w$ Impact: $w-v=e u$ Subst $v=w-e u: 2 u=2 w-e u+3 w=5 w-2 e u$ $w=\frac{2}{5} 1+e u \quad \text { *Answer Given* }$	M1 A1 M1 A1 DM1 A1 (6)	All three terms required, but condone sign errors Condone sign error, but must be subtracting and e must be used correctly. Penalise inconsistent signs here. Solve for w. Requires the two preceding M marks
7b	$w=\frac{7 u}{10}$ CLM: $3 m w=3 m x+4 m y$ and Impact: $y-x=\frac{3 w}{4}$ Subst: $3 w=3 x+4\left(x+\frac{3}{4} w\right)$ $\begin{aligned} & x=0, \\ & y=\frac{3}{4} w=\frac{21}{40} u \end{aligned}$	B1 M1A1 DM1 A1 A1 (6)	Seen, or implied by correct speeds. Both needed Solve for x or y. Dependent on the preceding M mark $0.525 u$,
7c	$\begin{aligned} & v=-\frac{u}{20} \\ & \text { Speed of separation }=\frac{u}{20}+\frac{21 u}{40}=\frac{23 u}{40} \end{aligned}$	$\begin{array}{lr}\text { B1 } & \\ & \\ \text { M1 } & \\ & \\ & \text { A1 } \\ & \\ & \\ & \\ & {[15]}\end{array}$	Correct velocity of P Correct use of their values and substitute for e. Check directions carefully $0.575 u$

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Ofqual
Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036421 Summer 2013

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

