Edexcel Maths M2

Mark Scheme Pack

2001-2013

PhysicsAndMathsTutor.com EDEXCEL FOUNDATION

Find Schene for Examiners.

Stewart House 32 Russell Square London WC1B 5DN

JUNE 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6675

Paper No. M2

Question number		Scheme N	larks	
1.	Finding r [(2t -	+ 2) i + (1 – 4t) j]	B1	
	Differentiating again	n to give $\mathbf{r} = 2\mathbf{i} - 4\mathbf{j}$ (any notation)	M1A1	
	Method for magnitu	ide: $\sqrt{2^2 + (-4)^2}$; = $\sqrt{20}$ or 4.47 (ms ⁻²)	M1A1	(5)
	[Note: use of consective giving $2i - 4j$ sections	cutive values of t substituted and "second differences found", ores 80M0, but allow M1A0 for magnitude.]	•	<u> </u>
2.	(a) Shape	Small circle Large circle Decoration		
	Relative masses	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1A1	
	Centre of mass from B	$30 0 \overline{y}$	B1	
	[Other likely alter tangent to large Appropriate mome [Most likely: using using	natives: from D: (10, 20); A: (0, 40) r circle at lowest point "E": (50, 20)] ints equation: B: $30 = 5\overline{y}$; using D: $4x20 - 1x10 = 5\overline{y}$ (14) A: $4x30 = 5\overline{y}$ (24); using E: $4x20 + 1x50 = 5\overline{y}$ (26)]	M1	
	Answer: 6 cm		A1	(5
	(b) C 10	transk und CG drawn vertical or CGA	М1	
		Method to find θ [or (90 - θ)]	M1	
•	0 ⁻ 24	$\tan \theta = \underline{10}$ or $\tan (90 - \theta) = \underline{AG}$, or equivalent	A1√ ≖	
		Answer:-22.6° (this answer only)	A1	(4
	[Note: 1f finding A	AC to vertical, then can score first three marks]		
			- - -	

PMT

PhysicsAndMathsTutor.com EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

Jan 16 / 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6678

Question number Scheme Marks [Wherever \leq or \geq used in scheme, can be replaced by =] 3. Resolve \rightarrow : S = F Resolve \uparrow : R = 6mg MM1 MIJA1A1 M(A): S $2a \cos 30^\circ = mg \sin 30^\circ (a + 5x)$ " $F \leq 0.5 R$ " $\Rightarrow S \leq 3mg$ $\Rightarrow (a+5x) \tan 30^\circ \le 6 a, \quad x \le (6\sqrt{3}-1)a \Rightarrow k = (6\sqrt{3}-1) \text{ or } 1.88$ MIA1 (9) [Alternatives: M(B): R 2a sin 30° = F 2a cos 30° + mga sin 30° + 5mgdsin 30° M1A1A1 d = 2a - x B1; "F $\leq 0.5 R$ " \Rightarrow F $\leq 3mg M1$, rest as scheme. M(centre) : Ra sin $30^{\circ} + 5mg(x - a)sin 30^{\circ} = (F + S) a cos 30^{\circ}$; S $\leq 3mg$ etc. Mark as scheme.] [Note (i): MR - 30° to the ground - gives $k = (6 - \sqrt{3})$ or 0.493 (ii) The same answer is obtained if only error is sin/cos confusion; both score 7/9. (iii) m used for mg throughout, no penalty; inconsistent, as scheme but max -2] (a) Impulse = change in momentum 4. M1A1 3.5 i + 3 j = 0.1[(10 i + 25 j) - (u i + v j)]A1 (3) Answer: $u i + v j = (-25 i - 5 j) ms^{-1}$ Mi (b) Complete method to find height s above hit position Correct equation in s only: 0 = 625 - 2(9.8)s; $s = 25(25/g) - \frac{1}{2}g(25/g)^2$ A1 (3) **A**1 Answer: 32.9 m ↔ 33~ Method for total time: $0 = 25 t - 4.9 t^2 \implies t = 5.10 s$ M1A1 (c) or "half time" $0 = 25 - 9.8 t' \implies t' = 2.55 s$ Horizontal distance = $10 \times t = 51 \text{ m} \left[\sqrt{4} \text{ for } 10 \text{ for } 20 \text{ for } 10 \text{ for } 20 \text{ for } 10 \text{ fo$ M1A1√(4) [Notes: If i and j interchanged, then can score Ms in (b) and (c); allow $\sqrt{10}$ for $25 \times 2.04 = 51$. [Use of answer in (a) can score M marks in (b)(c) only [Use of $\frac{V^2 \sin^2 \theta}{\sin^2 \theta}$ and $V^2 \sin 2\theta$: M1 method for V or θ , A1 both correct for first two marks] 2g g

Paper No. M2.

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

JUNE 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6.678

Paper No. M2

Question number	Scheme	Marks	
5.	(a) Using work/energy equation: (i) P.E. = ± 0.5 gh, = $\pm g \sin 20^\circ$; (ii) K.E. = $\frac{1}{2} \times 0.5 \times 25$ $\frac{1}{2} \times 0.5 \times 25 = 0.5$ gh + 2R Solving for R; R = 1.45 or 1.4 [Note: 2(R + 0.5 x 9.8 x sin 20°) = $\frac{1}{2}$ (0.5)25 scores first 5 marks, mark as	M1,A1;B1 \int_{M1A1}^{M1A1} s scheme]	
	Alternative method: Speed equation for a: $0 = 25 \pm 2 a (2)$ (a = ±6.25) Equation of motion: $(R + 0.5 \times 9.8 \times \sin 20^\circ) = \pm 0.5a$ Totally correct equation: $-(R + 0.5 \times 9.8 \times \sin 20^\circ) = 0.5a$, a-ve Solving for R	M1A1 (M1A1 (A1 M1A1	
	 (b) Complete method for s [Work/energy equation: ¹/₂ x 0.5 x 25 = s R + 0.5 x 9.8 x s sin 40° or -(R + 0.5g sin 40°) = 0.5a (a = -9.2) and 0 = 25 + 2as] Answer: s = 1.36 m < 1.4 m 	M1A1√ A1 (3))
6.	(a) $\rightarrow v_1 \qquad \rightarrow v_2$ CoM: $4mu + 4mu = 2m v_1 + 4m v_2$ $\rightarrow 2u \qquad \rightarrow u \qquad \Rightarrow \qquad 4u = v_1 + 2 v_2$ A O B O $2m \qquad 4m \qquad \text{NEL: } \frac{1}{2}(2u - u) = v_2 - v_1$ Solving to find v_2 ; $v_2 = \frac{3u}{2}$ (b) Substitute for v_2 in one equation; $v_1 = v_2 - \frac{1}{2}u = u$	MIA1 MIA1 MIA1cso(MIA1 (2	5) 2)
	(c) $\rightarrow w_1 \qquad \rightarrow w_2 \qquad \text{CoM:} \qquad 4m(\frac{3}{2}u) = 4m w_1 + m w_2$ $\rightarrow \frac{3}{2}u \qquad \rightarrow 0 \qquad \Rightarrow \qquad 6u = 4w_1 + w_2$ $O \qquad B \qquad O \qquad C$ $4m \qquad m \qquad \text{NEL:} \qquad e(\frac{3}{2}u) = w_2 - w_1$ Solving for w_1 as $f(e) : w_1 = \frac{3u}{4}(4-e)$ or e as $f(w_1) : e = \frac{2(6u - 5w_1)}{3u}$ Requirement is that $w_1 \ge \text{candidate's } v_1 = u; \Rightarrow e \le \frac{2}{3}$ [Note: If w_1 or e not found (not asked for): Setting $w_1 = v = u \Rightarrow w_2 = 2u = u \Rightarrow w_1 = u; w_2 = 2u = u$ is M1A1 but need to deal with inequality for final M1A1]	M1A1 $M1A1$ $M1A1$ $M1A1$ $M1A1$ $M1A1$	(8)

PMT

PhysicsAndMathsTutor com EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

JUNE 2000

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6-678

Paper No. M 2.

Question number	Scheme	Marks
7.	(a) $U_y = 23.75 \sin \alpha (= 19)$	B1
	Complete method to find time, e.g $-2.4 = 23.75 \sin \alpha t - \frac{1}{2} gt^2$	M1A1
	Solving to find t; $t = 4$	M1A1 (5)
	(b) $\underline{dv} = -\frac{1}{4}t^2$ $\Rightarrow v = -\frac{1}{12}t^3 + c$	M1A1
	$t = 0, v = 18 \implies v = 18 - \frac{1}{12} t^3$	A1 (3)
	(c) Putting $v = 0$ expression in (b)	M1
	Solving equation [dependent on previous M1 and M1 in (b)]	M1
	Finding T = 6, with no wrong working seen [Allow verification]	A1 cso (3)
	(d) Distance \rightarrow travelled by package = 23.75 cos α x 4 _c ; = 57 m [$$ only on 14.25 x 4 _c]	M1A1√
	For lorry $s = 18 t - \frac{1}{48} t^4$	M1;A1√
	Showing $s = 66\frac{2}{3}$ for lorry, and distance them between is just under 10m	A1 cso (5)
	[If lorry moving in direction CA, allow final answer of just under 124m]	
	Geoff Stale	25/6101

÷

EDEXGELAFOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6678

Question number Scheme		Mar	ks
$\frac{1}{2}$ Work dane = Loss in K.E. $R \times 200 = \frac{1}{2} \times 4 \times 25^{2}$	MI HI = A I	•	
R = 6.25	Al .	<u>4</u>	G
2. (a) $T = \frac{P}{V} = \frac{60\ 000}{30} (= 2000)$	ві		
1500g N2L: 2000-1000-1500×9.8×1 ~ 12	MI 61		
$a = (-) 0.15 (ms^{-2}) cao$	AI	4	
(b) 7 $T' = 1000 + 1500 \times 9.8 \times \frac{1}{12} (=2225)$	NI AI		Ψ.
P=TV 80000 = 2225 V	HI	4.	
V= 36 (ms ⁻¹) accept 36.0 (c) The resistance is likely to increase with speed	BI	크 上 :	0
3. (a) $a = 6 \pm i \pm 6 i$	MI		<u> </u>
t=2 $a = 12i + 6j$	A 1		
N2L $F = ma = 3.6 \pm + 1.84$	MI		
$ F = \sqrt{(3.6^2 + 1.8^2)} \approx 4.02 \ (accept 4.03) \ cao$	наі	<u>5</u>	
(b) $\mathbf{r} = (t^3 + c_1)\mathbf{i} + (3t^2 - 4t + c_2)\mathbf{j}$ ignore constructor	H1 A1+A	1	
Using $t = 0$, $T = (t^3 + 3)L + (3t^3 - 4t - 4)A$	ні		
$\vec{E} = 4$, $\vec{T} = 67\vec{L} + 28\vec{j}$ (m)	AI	<u>5</u>	60

PhysicsAndMathsTutor.com EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 1678

Question ۱ Marks Scheme number ABC WXYZ Template 4 (4) 48a² 4a² ; 44a² BI; BIA mass vetio <u>8a</u> 24 $\overline{\mathbf{x}}$ BIBI Ç. M. M(AB) 44 $a^2 = 48a^3 = 48a^2 \times \frac{89}{3}$ HI AI solving to $\overline{x} = \frac{30}{11}a *$ Al 7 C50 **(b)** $\frac{0}{1(AB)} = \frac{0}{1} + \frac{0}{1} + \frac{30}{1} = \frac{1}{1} + \frac{1}{1} + \frac{30}{1} = \frac{1}{1} + \frac{1}{1}$ мсав) $K = \frac{3}{55} \text{ or about } Al$ 1 $K = \frac{3}{55}$ 4 solving to 5. (a) $M(A) T \times 2asm \theta = Wa + 2W(2a - x) \int MI A2(1,0)$ D $T \times \frac{6}{5}a = 5Wa - 2Wx$ $T = \frac{5(S_a - 2z)}{4} W = co L HI HI$ 5 (b) $H(B) = \frac{7}{6} W \times 2a = Wa + 2W x$ MI AI $\Im c = \frac{2}{3} d \qquad 0.\varepsilon.$ 3 Al (c) $R(\rightarrow) \quad X = T\cos\theta = \frac{5}{6}(5-\frac{4}{3}) \quad W \times \frac{4}{5} \quad [Hi H]^{\Lambda}$ MI AI 4 $=\frac{22}{9}W$ Alternative to (6) $R(4) \quad \frac{7}{2}W + Tsm\theta = 3W$ $\frac{7}{6}W + \frac{5(5q-2x)W}{6q} \times \frac{3}{5} = 3W$ MIAL $x = \frac{2}{3}a$ **\$**1 3

Paper No.

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 676 6678

Paper No. M2

Question number	Scheme		Marks
6 .	$ \xrightarrow{4} (a) LM \qquad mu = mx + 2my $ $ \xrightarrow{7} (a) NEL \qquad x - y = -eu $ $ \xrightarrow{7} \xrightarrow{9} (a) NEL \qquad x - y = -eu $	B1 M(A)	
	(b) Obtaining $x = \frac{1}{3}(1-2e)u$ alles anywhere Oise this is the first first $x = \frac{1}{3}(1-2e)u$	MI AI	2
	$C < \frac{1}{2}$ (c) $y = \pounds y$, $x = \pounds y$	AI	<u>4</u>
	Find K.E = $\frac{1}{2}m(\frac{1}{6}u)^2 + \frac{1}{2}2m(\frac{5}{12}u)^2(=\frac{27}{144}mu^4)$ Loss in K.E = $\frac{1}{2}mu^2 - \frac{27}{144}mu^4 = \frac{5}{144}mu^4$	MAI	4
	(a) Heat, sound, (work done by) internal forces	BI	<u> </u>
1	(a) (1) $U_y = 80 \sin 60^\circ$, $V_y = 0$ $0^2 = (80 \sin 60)^2 - 2 \times 9.8 \times 5$ $5 \approx 244 - 9$	81, 81 Mi	
	Height is 260 m. Accept 265		4
	(b) $0 = 80 \text{sm} 60 - 4.8 \text{c}$ t = 7.1 (s) Accept 7.07	AL	2
	(c) (->) $U_{x} = 80 \cos 60^{\circ} (= 40)$	BI	
	$LM 100 + 40 = 40 \times V + 60 \times 80$ $V = (-) 20 + Cs0$	A1	3
	(d) Let N be point on ground vertically below B ON = 80 cos 60° × their (b) (=282.78),	mi,	
	$\int 264.9 = \frac{1}{2} \times 9.8 \times t^2 = 7.35 \text{aurt}$	m ai	
	CN = 20 ×7.35 ≈ 147 avrt	ML A1	
	OC = 140 (m) accept 136	AI	<u>و</u>

EDEXCEL MECHANICS M2 (6678) – JUNE 2002

PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks	5
1.	(<i>a</i>)	Differentiating: $\mathbf{a} = 3\mathbf{i} - 5\mathbf{j}$ (sufficient)	M1A1	(2)
	(<i>b</i>)	Integrating : $\mathbf{r} = (\frac{3}{2}t^2 - 2t)\mathbf{i} - \frac{5}{2}t^2\mathbf{j} (+C)$	M1A1	
		Using initial conditions to find C (3i); $\mathbf{r} (t=2) = 5 \mathbf{i} - 10 \mathbf{j}$	M1; A1	
		Distance = $\sqrt{\{5^2 + (10)^2\}}$; = 5 $\sqrt{5}$ or 11.2 or 11.18 (m)	M1; A1	6)
			(6 ma	rks)
2.	(<i>a</i>)	$0 \le t \le 3$ $v = 2t^2 - \frac{1}{3}t^3(+C)$ Evidence of integration for M1	M1 A1	
		$t = 3 \implies v = 9 \text{ m s}^{-1}$	A1	(3)
	(<i>b</i>)	$t \ge 3 \qquad \qquad v = -\frac{27}{t} (+C)$	B1	
		Using $t = 3$ and candidates' $v = 9$ to find C; $C = 18$		
		Substituting $t = 6$ in expression for v ; $v = 13.5$ m s ⁻¹	M1; A1	(5)
			(8 ma	rks)
3.	(<i>a</i>)	Change in KE: $\frac{1}{2} \times 80 \times (8^2 - 5^2)$ [loss: 2560 - 1000 = 1560 J]	B1	
		Change in PE: $80 \times g \times (20 - 12)$ [loss: $15680 - 9408 = 6272$ J]	B1	
		WD by cyclist = $20 \times 500 - (loss in K.E. + P.E.)$	M1 A1 ft	
		= 2168 Nm (allow 2170 and 2200)	A1	(5)
	(<i>b</i>)	Equation of motion: $F - 20 = 80 \times 0.5$ [M1 requires three terms]	M1 A1	
		Power = $F_c \times 5$; = 300 W	M1 A1	
			(9 ma	rks)

(ft = follow through mark)

EDEXCEL MECHANICS M2 (6678) – JUNE 2002

PROVISIONAL MARK SCHEME

Ques Num	tion ber			Scheme		Marks	
4.	(<i>a</i>)	Shape	Square	Semi-circle	Lamina L		
		Relative masses	100	$12\frac{1}{2}\pi(39.3)$	$100 - 12\frac{1}{2}\pi(60.7)$	M1 A1	
		Centre of mass from <i>AB</i>	5	$\frac{20}{3\pi}$ (2.12)	\overline{x}	B1 B1	
		Moments about AB:	$100 \times 5 - 12$	$\frac{1}{2}\pi\times\frac{20}{3\pi} = (100)$	$(1-12\frac{1}{2}\pi)x$	M1 A1	
		Answer: 6.86 cm				A1 (cao) (7)
	(<i>b</i>)	D_{θ}		Correct ang	le, diagram sufficient	M1	
				Method to f	ind θ [or (90 – θ)]	M1	
		$\int 10 - \overline{x}$	C	$\tan \theta = \frac{10}{3}$	$\frac{\overline{x}_c}{5}$	A1 ft	
		0		Answer: 32	2.1°	A1 (cao) (4)
						(11 marks	3)
5.	(<i>a</i>)	$x = u \cos \alpha t \; ; \qquad y$	$v = u \sin \alpha t - u$	$\frac{1}{2}gt^2$		B1; B1	
		Eliminating t : $y = x$	$u\sin\alpha \frac{x}{u\cos}$	$\frac{1}{2}g \frac{x^2}{(u\cos\alpha)}$	$\overline{)^2}$	M1	
		$y = x \tan \alpha - \frac{gx}{2u^2 \cos \theta}$	$\frac{2}{\cos^2\theta}$			M1	
		$y = x \tan \alpha - \frac{gx^2}{2u^2} (1)$	$+\tan^2 \alpha$) *			A1 (5)
	(<i>b</i>)	$-2 = x \tan 45^\circ - \frac{9.8}{2}$	$\frac{3 \times x^2}{\langle 14^2 \rangle} (1 + \tan x)$	n ² 45°)		M1 A1	
		Simplifying "correct implied, e.g. $x^2 - 20x$	the state of the second s	tic of form $ax^2 + b$ $0.05x^2 + x + 2 = 0$	bx + c = 0 (may be ; $4.9x^2 - 98x - 196 = 0$)	M1	
		Solving for t (2.205	s), $x = 14 \cos(2\pi x)$	$x = 45^{\circ} t, x = 21.8$	m	M1 A1 (5	5)
	(<i>c</i>)	$21.8 c = 14 cos 45^{\circ}$	t ; t = 2.2 s			M1 A1 (cao) (2	2)
						(12 marks	5)

(ft = follow through mark; cao = correct answer only; cso = correct solution only; * indicates answer is given on the examination paper)

EDEXCEL MECHANICS M2 (6678) – JUNE 2002

PROVISIONAL MARK SCHEME

Question Number		Scheme	Mark	5
6.	(<i>a</i>)	$\leftarrow v_1 \qquad \rightarrow v_2 \qquad \text{CoM:} mu = -mv_1 + 3 \ mv_2$	M1 A1	
		$\begin{array}{ccc} \rightarrow u & 0 \\ A \bigcirc & B \circlearrowright & \end{array} \qquad \Rightarrow u = -v_1 + 3 v_2$		
		m 3m NEL: $e u = v_2 + v_1$	M1 A1	
		Solving : $v_1 = \frac{1}{4}(3e-1)u$	M1 A1	
		$v_2 = \frac{1}{4} (1 + e)u$	A1	(7)
		Speed of <i>B</i> after hitting wall = $\pm \frac{3}{16}(1+e)u$ (v ₂ *)	B1 ft	
		For second collision $v_2^* > v_1$; $\frac{3}{16} (1+e)u > \frac{1}{4} (3e-1)u$	M1	
		Solving, $e < \frac{7}{9}$	M1 A1	
		Finding lower bound using $v_1 > 0$; $e > \frac{1}{3}$	M1	
		Complete range: $\frac{1}{3} < e < \frac{7}{9}$	A1 (cso)	(6)
			(13 ma	rks)
7.	(<i>a</i>)	F = 0.6R (seen anywhere)	M1	
		T \checkmark Moments about B:		
		$R = \frac{\beta}{12}$ $R \times 2a \cos \alpha + F \times 2a \sin \alpha = W \times a \cos \alpha$ $R = \frac{12}{12}$ $R \times 2a \cos \alpha + F \times 2a \sin \alpha = \frac{12}{12}$	M1 A1 M1	
		$F \qquad \alpha \qquad \qquad 15 \qquad 15$ $F \qquad \alpha \qquad \qquad Solving for R$		
		$\frac{24}{13}R + \frac{6}{13}R = \frac{12}{13} W \Longrightarrow 30R = 12$	M1	
		$\Rightarrow R = \frac{2}{5} \ W *$	A1	(6)
	(<i>b</i>)	Resolve \leftrightarrow : $T \cos \beta = F$; $= 0.6 R = \frac{6}{25} W$	M1 A1	
		Resolve \updownarrow : $T \sin \beta + R = W$ $T \sin \beta = \frac{3}{5} W$	M1 A1	
		Complete method for β [e.g tan $\beta = 2.5$]; $\beta = 68.2^{\circ}$	M1; A1	(6)
		Complete method for <i>T</i> : substitute for β or $\sqrt{\{(0.6 W)^2 + (0.24 W)^2\}}$	M1	
		$T = 0.646W \implies k = 0.65 \text{ or } 0.646$	A1	(2)
			(14 ma	rks)

EDEXCEL MECHANICS M2

PhysicsAndMathsTutor.com PROVISIONAL MARK SCHEME JANUARY 2003

Que nur	stion nber	Scheme		Marks
1.	(<i>a</i>)	Use of $(8 + \lambda)m$	B 1	
		i : $3m \times 4 + \lambda m \times 4 = (8 + \lambda)m \times 2$	M1	
		Solving to $\lambda = 2$ (*)	M1	A1 (4)
		$\mathbf{j}: 5m \times (-3) + 2m \times 2 = 10m \times k$	M1	A1
		k = -1.1	A1	(3)
				(7 marks)
2.	(<i>a</i>)	$T_r = \frac{24000}{12} \ (= 2000)$	M1	
		N2L: $T_r - 1200 = 1000 \times f$	M1	A1ft
		f = 0.08	A1	(4)
	<i>(b)</i>	Work Energy $\frac{1}{2} \times 1000 \times 14^2 = 1200d$	M1	A1
		$d = 81\frac{2}{3}$ awrt 81.7	A1	(3)
	(c)	Resistances may vary with speed	B1	(1)
				(8 marks)

EDEXCEL	MECHANICS M2	PROVISIONAL MARK SCHEME JANUARY 2003				
Question number		Sche	eme		Marks	8
3.	R MB mg mg $2mg$ A Fr	(†) $R = 3mg$ M(B) $mga \cos \alpha + 2mg \approx$ Solving to $Fr = \frac{3}{4}n$	$\frac{3}{2}a\cos\alpha + Fr \times 2$	$2a \sin \alpha = R \times 2a \cos \alpha$	B1 M1 A2 1,0 M1 A1)
	$Fr \leq \mu R$ =	$\Rightarrow \frac{3}{4}mg \le \mu 3mg$			M1	
	$\mu \ge \frac{1}{4}$	(least value is $\frac{1}{4}$)			M1 A1	(9)
					(9 ma	arks)
4. (<i>a</i>)			\triangleright	\bigcirc		
	MR	$48a^2$	$12a^{2}$	$60a^2$	B1, B1ft	
	СМ	4 <i>a</i>	$(-)\frac{1}{3} \times 4a$	\overline{x}	B1	
	$48a^2 \times 4a$	$-12a^2 \times \frac{4}{3}a = 60\overline{x}$			M1 A1	
	:	Solving to $\frac{-}{x} = \frac{44}{15}a$	n (*)		A1	(6)
<i>(b)</i>	$\lambda M \times 4a = M \times \frac{44}{15}$	$\frac{1}{5}a$			M1 A1	
	$\lambda = \frac{11}{15}$				A1	(3)
					(9 ma	arks)

EDEXCEL MECHANICS M2

PhysicsAndMathsTutor.com PROVISIONAL MARK SCHEME JANUARY 2003

Question number	Scheme	Mark	S
5. (<i>a</i>)	$v = \int a dt = 2t^2 - 8t \ (+c)$	M1 A1	
	Using $v = 6$, $t = 0$; $v = 2t^2 - 8t + 6$	M1 A1	(4)
	$v = 0 \Rightarrow 2t^2 - 8t + 6 = 0, \Rightarrow t = 1,3$	M1 A1	
	$S = \int (2t^2 - 8t + 6) dt = \left[\frac{2}{3}t^3 - 4t^2 + 6t\right]$	M1 A2, 1,	, 0
	$=0-2\frac{2}{3}$	M1	
	Distance is $(\pm)2\frac{2}{3}$ m	A1	(7)
		(11 m	arks)
6. (<i>a</i>)	$L.M. \ 2u = 2x + y$	M1 A1	
	NEL $y - x = \frac{1}{3}u$	M1 A1	
	Solving to $x = \frac{5}{9}u$ (*)	M1 A1	
	$y = \frac{8}{9}u (*)$	A1	(7)
(<i>b</i>)	$(\pm) \ \frac{8}{9} eu$	B1	
	L.M $\frac{10}{9}u - \frac{8}{9}eu = w$	M1 A1	
	NEL $w = \frac{1}{3} \left(\frac{5}{9}u + \frac{8}{9}eu \right)$	M1 A1	
	Solving to $e = \frac{25}{32}$ accept 0.7812s	M1 A1	(7)
(<i>c</i>)	Q still has velocity and will <i>bounce back</i> from wall colliding with <i>stationary</i> P.	B1	(1)
		(15 m	arks)

EDEXCEL MECHANICS M2

PhysicsAndMathsTutor.com PROVISIONAL MARK SCHEME JANUARY 2003

Question number	Scheme		Marks
7. (<i>a</i>)	$\mathbf{I} = 0.4(15\mathbf{i} + 16\mathbf{j} + 20\mathbf{i} - 4\mathbf{j}) \qquad (= 0.4(35\mathbf{i} + 12\mathbf{j}) = 14\mathbf{i} + 4.8$	3 j)	M1
	$ \mathbf{I} = \sqrt{(14^2 + 4.8^2)} \text{ or } 0.4\sqrt{(35^2 + 12^2)}$	1 for any magnitude	M1 A1
	= 14.8 (Ns)		A1 (4)
<i>(b)</i>	Initial K.E. = $\frac{1}{2}m(15^2 + 16^2)$ (= 240.5 <i>m</i> = 96.2 J)		M1
	$\frac{1}{2}mv^2 = \frac{1}{2}m(15^2 + 16^2) = m \times 9.8 \times 1.2$ -1	each incorrect term	M1 A2, 1,0
	$v^2 = 504.52$		M1
	$v = 22 \text{ (m s}^{-1})$	accept 22.5	A1 (6)
(C)	$\arccos \frac{15}{22.5} = 48^{\circ}$	accept 48.1°	M1 A1 A1 A1 (4)
(<i>d</i>)	Air resistance		
	Wind (problem not 2 dimensional)		
	Rotation of ball (ball is not a particle)	any 2	B1, B1 (2)
			(16 marks)
Alt (b)	Resolve \uparrow with 16 and 9.8		M1
	(\uparrow) $v_y^2 = 16^2 + 2 \times (-9.8) \times (-1.2)$		M1 A1
	$(v_y^2 = 279.52, v_y \approx 16.7)$		
	$v^2 = 15^2 + 279.52$		M1 A1
	$v = 22 \text{ (m s}^{-1}\text{)}$	accept 22.5	A1 (6)
Alt (c)	$\arctan \frac{16.7}{15} = 48^{\circ}$		M1 A1 A1 A1 (4)

EDEXCEL MECHANICS M2 (6678) – JUNE 2003

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
1. (<i>a</i>)	$x = \int 6t - 2t^2 \mathrm{d}x$	M1
	$= 3t^2 - \frac{2}{3}t^3$	A1
	$v = 0 \Longrightarrow 6t - 2t^2 = 0 \implies t = 3 \text{ (or 0)}$	M1
	$t = 3: x = (3 \times 9) - (\frac{2}{3} \times 27) = 9 \text{ m}$	M1 A1
		(5 marks)
2. (<i>a</i>)	$\mathbf{I} = 0.2[(15\mathbf{i} + 15\mathbf{j}) - (-10\mathbf{i})]$	M1
	$=$ 5 \mathbf{i} + 3 \mathbf{j}	M1
	$ \mathbf{I} = \sqrt{(5^2 + 3^2)} = \sqrt{34} = 5.8 \text{ Ns}$	M1 A1 (4)
<i>(b)</i>		
	$3 \tan \theta = \frac{3}{5} \Rightarrow \theta = 31^{\circ} \text{ (nearest degree)}$	M1 A1 (2)
	5	
(c)	K E Gain = $\frac{1}{2} \times 0.2[(15^2 + 15^2) - 10^2)] = 35$ J	M1 A1 (2)
		(8 marks)
3. (<i>a</i>)		
	Area: $6a^2$ a^2 $5a^2$ (ratio)	B1
	CM from AD: $\frac{3a}{2}$ $\left(2a + \frac{2a}{3}\right) = \frac{8a}{3}$ \overline{x}	B1 B1
	$6 \times \frac{3a}{2} - 1 \times \frac{8a}{3} = 5\overline{x}$	M1
	$\overline{x} = \frac{19a}{15}$	A1 (5)
<i>(b)</i>	M(<i>X</i>),	
	$Mg\left(\frac{3a}{2} - \frac{19a}{15}\right) = mg \times \frac{3a}{2}$	M1 A1 ft A1
	$mg \qquad \implies m = \frac{7M}{45}$	A1 (4)
	mg	(9 marks)

⁽ft = follow through mark)

EDEXCEL MECHANICS M2 (6678) – JUNE 2003

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	
4. (<i>a</i>)	$M(A),$ $40g \times \frac{3}{2} + 60g \times 2 = T \sin \alpha \times 3$ use of $\sin \alpha = \frac{3}{5}$ $60g + 120g = \frac{9T}{5}$	M1 A2, 1, 0 B1	
(<i>b</i>)	$\Rightarrow T = 100g = 980 \text{ N} (*)$ $(\rightarrow): X = T \cos \alpha$	B1	
	(†) $Y + T \sin \alpha = 100g$ $R = \sqrt{(X^2 + Y^2)} = \sqrt{(784^2 + 392^2)}$ = 877 N (3 sf)	M1 A1 M1 A1 A1 (6)	
(c)	Cable light \Rightarrow tension same throughout \Rightarrow force on rod at <i>D</i> is 60 <i>g</i>	B1 (1) (12 marks)	
5. (<i>a</i>)	$(\rightarrow): u \cos \alpha \times T = 8$		
<i>(b)</i>	$u \times \frac{1}{5} \times I = 8$ $uT = 10 (*)$ $(\uparrow): -4 = u \sin \alpha T - \frac{1}{2} gT^{2}$	M1 A1 (2) M1 A1	
	$-4 = u \times \frac{3}{5} \left(\frac{10}{u}\right) - \frac{1}{2} \times 9.8 \left(\frac{10}{u}\right)^2$	M1	
	$u = 7$ $v_{\rm H} = u \cos \alpha = \frac{28}{5}$	M1 A1 (7) B1 ft	
	$v_{\rm V}^2 = (-u \sin \alpha) + 2g \times 4$	M1	
	$\Rightarrow v_{\rm V} = 9.8 \ (= \frac{49}{5})$	A1 ft	
	v_v $\tan \phi = \frac{49/5}{28/5} = \frac{7}{4}$	M1 A1 cao (5)	
		(12 marks)	

(ft = follow through mark; cao = correct answer only; (*) indicates final line is given on the paper)

EDEXCEL MECHANICS M2 (6678) – JUNE 2003

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	
6. (<i>a</i>)	$F \qquad (\checkmark): F = 20 + 64g \sin \alpha$	M1	
	= 64.8 N	A1	
	$P = Fv = 64.8 \times 5 = 324 \text{ W}$	M1 A1	(4)
	64g		
<i>(b)</i>	20 (\checkmark): 64g sin $\alpha - 20 = 64a$	M1 A1	
	$a = 0.3875 \text{ m s}^{-2}$	A1	
	$v^2 = 5^2 + 2 \times 0.3875 \times 80$	M1	
	64g $v = \sqrt{87} = 9.3 \text{ m s}^{-1}$ (2 sf)	A1	(5)
(c)	$\frac{8}{5} \times 20 = 32 \text{ N}$	B1	(1)
(d)	$F = \frac{200}{8}$	B1	
	$a \frac{200}{8} + 64g \sin \alpha - 32 = 64a$	M1 A1	
	$F_{a} = 0.59 \text{ m s}^{-2}$ (2 sf)	A1	(4)
	64 <i>g</i>		
		(14 mar	rks)

EDEXCEL MECHANICS M2 (6678) – JUNE 2003

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
7. (<i>a</i>)	$u \rightarrow \rightarrow 0$ $mu = mv_1 + 2mv_2$	M1 A1
	$A(m) e(2m)B$ $eu = -v_1 + v_2$	M1 A1
	$ \begin{array}{ccc} & & \\ \rightarrow & \rightarrow \\ v_1 & v_2 \end{array} \end{array} \qquad v_1 = \frac{u}{3}(1-2e); v_2 = \frac{u}{3}(1+e) $	M1 A1 A1 (7)
<i>(b)</i>	$v_1 > 0 \implies \frac{u}{3}(1-2e) > 0 \implies e < \frac{1}{2}$	M1 A1 (2)
(c)	$v_2 \rightarrow \rightarrow 0$ $2mv_2 = 2mv_3 + 4mv_4$ $A \xrightarrow{(2m)} (4m)_{P}$ $ev_2 = -v_3 + v_4$	M1
	$\begin{array}{ccc} A & (2m) & (1m) & B \\ \rightarrow & \rightarrow & \\ v_3 & v_4 & \\ \end{array} \qquad \qquad$	M1 A1
	Further collision if $v_1 > v_3$	
	i.e. if $\frac{u}{3}(1-2e) > \frac{u}{9}(1-2e)(1+e)$	M1
	i.e. if $3 > 1 + e$ (as $(1 - 2e) > 0$)	
	i.e. if $2 > e$	M1
	which is always true, so further collision occurs	
		(15 marks)

(cso = correct solution only)

EDEXCEL MECHANICS M2 (6678) – JANUARY 2004

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
1. (<i>a</i>)	$T = \frac{10000}{20}$ or equivalent	M1 A1
	$T - R - 400 \text{ g sin } \theta = 0$	M1 A1
	R = 220	A1
		(5 marks)
2. (<i>a</i>)	$\mathbf{a} = 2t\mathbf{i} - 6\mathbf{j}$	M1
	$t = 4: \mathbf{a} = 8\mathbf{i} - 6\mathbf{j}$	dep . M1
	$ \mathbf{F} = 0.75 \sqrt{(8^2 + 6^2)} = 7.5 \mathrm{N}$	M1 M1 A1 (5)
<i>(b)</i>	$\mathbf{I} = 9\mathbf{i} - 9\mathbf{j}$	B1
	$9i - 9j = \frac{3}{4}(v - (27i - 30j))$	M1 A1 f.t.
	$\mathbf{v} = 39\mathbf{i} - 42\mathbf{j} \text{ m s}^{-1}$	A1 (4)
		(9 marks)
3. (<i>a</i>)	$\frac{1}{2} \times 2 \times 10^2 - \frac{1}{2} \times 2 \times v^2 = 2g \ 3 \ \sin 30^\circ$	M1 A1 A1
	$v = 8.4 \text{ m s}^{-1} (8.40 \text{ m s}^{-1})$	A1 (4)
	Or $(a = -g \sin 30^\circ)$	
	$v^2 = 10^2 - 2g \sin 30^\circ \times 3$	M1 A1 A1
	$v = 8.4 \text{ m s}^{-1} (8.40 \text{ m s}^{-1})$	A1 (4)
(b)	$R = 2g \cos 30^{\circ}$	B1
	$3F; \frac{1}{2} \times 2 \times 10^2 - \frac{1}{2} \times 2 \times 7^2; 2g \times 3 \sin 30^\circ$	B2 (-1 e.e.o.o)
	$3\mu R = \frac{1}{2} \times 2 \times 10^2 - \frac{1}{2} \times 2 \times 7^2 - 2g \times 3 \sin 30^\circ$	M1
	$\mu = 0.42(4)$	A1 (5)
	$OR \qquad R = 2g \cos 30^{\circ}$	B1
	$a = \frac{(7^2 - 10^2)}{2 \times 3} = \frac{17}{2}; -F; -2g \sin 30^{\circ}$	B2 (-1 e.e.o.o)
	$-\mu R - 2g\sin 30^\circ = -\frac{17}{2} \times 2$	M1
	$\mu = 0.42(4)$	A1 (5)
		(9 marks)

EDEXCEL MECHANICS M2 (6678) – JANUARY 2004

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
4. (<i>a</i>)	$M(B), N 2a \cos \theta = W a \cos \theta + \frac{1}{4} W \frac{3a}{2} \sin \theta$	M1 A2 (-1 e.e.)
	$N = \frac{7W}{8}$	dep. M1 A1 (5)
<i>(b)</i>	$R = \frac{1}{4}W; \qquad F + N = W$	B1; B1
	$F \leq \mu R$ or $F = \mu R$	M1
	$\frac{1}{2} \le \mu^* $ (exact)	A1 c.s.o. (5)
(c)	It does not bend	B1 (1)
	Or has negligible thickness	
		(10 marks)
5. (<i>a</i>)	2ut = 735	M1 A1
	$0 = 3ut - \frac{1}{2}gt^2$	M1 A1
	eliminating <i>t</i>	dep. M1
	<i>u</i> = 24.5 *	A1 (6)
<i>(b)</i>	$t = \frac{735}{49} = 15$	M1 A1 (2)
(<i>c</i>)	Initially: $v^2 = (2u)^2 + (3u)^2$ (7803.25)	M1
	$\frac{1}{2}mv^2 - \frac{1}{2}m65^2 = mgh$	M1 A1
	h = 180 m (183 m)	A1 (4)
	OR $v_y^2 = 65^2 - (2u)^2$ (1824)	M1
	$v_y^2 = (3u)^2 - 2gh$	M1 A1
	h = 180 m (183 m)	A1 (4)
		(12 marks)

(ft = follow through mark; cao = correct answer only; (*) indicates final line is given on the paper)

EDEXCEL MECHANICS M2 (6678) – JANUARY 2004

PROVISIONAL MARK SCHEME

Questio Number	n r	Scheme		Mai	·ks		
6. (<i>d</i>	<i>i</i>)	$u \rightarrow$	$\rightarrow 0$	CLM: $mu = mv_1$	$+3 mv_2$	B1	
		т	3 <i>m</i>	NIL: $eu = -v_1 + $	- <i>v</i> ₂	M1 A1	
		$v_1 \rightarrow$	$v_2 \rightarrow$	solving,		dep. M1	
				$v_2 = \frac{u}{4} (1+e)^*$		A1	(5)
(4	b)	Solvir	ng for $v_{1;}$	$\left \frac{u}{4}(1-3e)\right $		M1 A1	(2)
(c)	$\frac{1}{2}m$	$\frac{u^2}{16}$ (1 –	$(3e)^2 + \frac{1}{2} \ 3m \ \frac{u^2}{16} \ (1+e)^2$	$)^{2} = \frac{1}{6} mu^{2}$	M1 A1 f.t	. A1
				$e^2 = \frac{1}{9}$		dep. M1 A	A1
				$e = \frac{1}{3}$		A1	(6)
(4	<i>d</i>)	$v_1 = \frac{1}{2}$	$\frac{u}{4}(1-3)$	$(\times \frac{1}{3}) = 0 \Longrightarrow$ at rest.		A1 c.s.o.	(1)
						(14	marks)

EDEXCEL MECHANICS M2 (6678) – JANUARY 2004

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
7. (<i>a</i>)	$AD: 10m\bar{x} = 3m\frac{5a}{2} + 3m \times 5a$	M1 A1
	$\overline{x} = 2.25a *$	A1 (3)
(b)	$AB: 10m \overline{y} = 2m \times 2a + 3m \times a$	M1
	$\overline{y} = 0.7a$	A1 (2)
(c)	$\tan \theta = \frac{2.5a - \bar{x}}{\bar{y}}$	M1 A1 f.t.
	$\theta = 20^{\circ}$	A1 (3)
	A G D D D C D C $M(0), 10mg \times \frac{a}{4} = P \times 2a$ $(OR: 4mg \times \frac{5a}{2} - 3mg \times \frac{5a}{2} = P \times 2a)$	M1 A1 A1
	$P = \frac{5mg}{4} * \text{(exact)}$	A1 (4)
(<i>e</i>)	$S = \frac{5mg}{4}; \qquad R = 10mg$	B1; B1
	$F = \sqrt{S^2 + R^2} = \frac{5mg\sqrt{65}}{4} $ (10.1 mg)	M1 A1 (4)
		(16 marks)

EDEXCEL MECHANICS M2 (6678) – JUNE 2004

Question Number	Scheme	Marks
1. (a)	$F = \frac{36000}{20} (=1800)$	B1
	N2L $\frac{3600}{20} - 750 = 1500a$ ft their F	M1 A1ft
	$a = 0.7 ({\rm ms^{-2}})$	A1 4
(b)	$F = 750 + 1500g \times \frac{1}{10} (= 2220)$	M1 A1
	$ \begin{array}{c} \alpha \\ \hline \alpha \\ \hline 1800g \\ \hline \end{array} P = 2220 \times 20 = 44400 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	A1 3 7
	Accept also 44000, 44 KW, 44.4 KW	AI 57
2.	(a) $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$	
	$-4i + 4j = 0.2v - 0.2 \times 30i$	M1 A1
	$\mathbf{v} = 10\mathbf{i} + 20\mathbf{j} \qquad (\mathrm{ms^{-1}})$	A1 <u>3</u>
	(b) $\tan\theta = \frac{20}{10}$	M1
	$\theta = 63.4^{\circ}$ accept awrt 63° or 1.1°	A1 <u>2</u>
	(c) Final K.E. = $\frac{1}{2} \times 0.2 \times (10^2 + 20^2)$ (= 50) ft their v	M1 A1ft
	K.E. lost = $\frac{1}{2} \times 0.2 \times 30^2 - \frac{1}{2} \times 0.2 \times (10^2 + 20^2)$	M1
	= 40 (J) cao	A1 <u>4</u> 9

EDEXCEL MECHANICS M2 (6678) – JUNE 2004

Questi Numb	ion ber	Scheme	Marks
3.	(a)	Rectangle Triangle Decoration	
		Mass Ratio 6 12 18 Ratio 1:2:3	B1
		CM from BG $(-)1\frac{1}{2}$ 2 \overline{x}	B1
		$18 \times \overline{x} = -6 \times 1\frac{1}{2} + 12 \times 2$ $\overline{x} = \frac{5}{6}$ accept exact equivalents	M1 A1 A1 <u>5</u>
	(b)	G \overline{x} g g	
		Identification and use of correct triangle	M1
		$\tan \theta = \frac{1}{3 + \overline{x}}$ ft their \overline{x}	M1 A1ft
		$\theta = 14.6^{\circ}$ cao	A1 <u>4</u> 9

EDEXCEL MECHANICS M2 (6678) - JUNE 2004

Question Number	Scheme	Marks
4.	(a) $\mathbf{p} = (2t^2 - 7t)\mathbf{i} - 5t\mathbf{j}, +3\mathbf{i} + 5\mathbf{j}$ $= (2t^2 - 7t + 3)\mathbf{i} + (5 - 5t)\mathbf{j}$	M1, M1 A1+A1 <u>4</u>
	(b) $\mathbf{q} = (2\mathbf{i} - 3\mathbf{j})t - 7\mathbf{i}$	M1 A1
	j : $5-5t = -3t \implies t = 2.5$ equating and solving	M1 A1
	At $t = 2.5$ i: $p_x = 2 \times 2.5^2 - 7 \times 2.5 + 3 = -2$ $q_x = 2 \times 2.5 - 7 = -2$ both	M1
	$p_x = q_x \implies$ collision cso	A1 <u>6</u> 10
	Alternative in (b)	
	i: $2t^2 - 7t + 3 = 2t - 7 \implies 2t^2 - 9t + 10 = 0$ t = 2, 2.5 equating and solving	M1 A1
	At $t = 2.5$ J : $p_y = 5 - 5 \times 2.5 = -7.5$ $q_y = -3 \times 2.5 = -7.5$ both	M1
	$p_y = q_y \implies$ collision cso	A1
	In alternative, ignore any working associated with $t = 2$	

EDEXCEL MECHANICS M2 (6678) – JUNE 2004

Question Number	Scheme	Marks
5.	$\begin{array}{c} 5u \\ \hline 2m \\ \hline x \\ \end{array}$	
	(a) LM $10mu = 2mx + 3my$ NEL $y - x = 5eu$	M1 A1 B1
	Solving to $y = 2(1+e)u$ * cso	M1 A1 <u>5</u>
	(b) $x = 2u - 3eu$ finding x, with or without $e = 0.4$ x = 0.8u	M1 A1
	$x > 0 \implies P$ moves towards wall and Q rebounds from wall \implies second collision ft any positive x	A1 ft <u>3</u>
	(c) $x = -0.4u$	B1
	Speed of Q on rebound is $3.6fu$	
	For second collision $3.6 fu > 0.4u$	M1
	$f > \frac{1}{9}$ ignore $f \mid 1$	A1 <u>3</u> 11

PMT

PhysicsAndMathsTutor.com

EDEXCEL MECHANICS M2 (6678) – JUNE 2004

Question Number	Scheme	Marks
6.	R A A A A A A B B $10 mg$ B $10 mg$	
	(a) $M(A) N \times 2a \sin \alpha = mg \times a \cos \alpha + 10mg \times 2a \cos \alpha$	M1 A2(1, 0)
	$2N \tan \alpha = 21mg$	
	N = 7mg * cso	M1 A1 <u>5</u>
	(b) $\uparrow R = 11mg$	B1
	$F_r = 0.6 \times 11mg = 6.6mg$	B1
	For min P $F_r \rightarrow P_{\min} = 7mg - 6.6mg = 0.4mg$	M1 A1
	For max P $F_r \leftarrow P_{\text{max}} = 7mg + 6.6mg = 13.6mg$	M1 A1
	$0.4mg \mid P \mid 13.6mg$ cso	A1 <u>7</u> 12
	Note: In (a), if moments are taken about a point other than A, a complete set of equations for finding N is needed for the first M1. If this M1 is gained, the A2(1, 0) is awarded for the moments equation as it first appears.	

EDEXCEL MECHANICS M2 (6678) – JUNE 2004

Question Number	Scheme	Marks
7.	(a) Work-Energy $R \times 60 = 80 \times 9.8 \times 24.4 - \frac{1}{2} \times 80 \times 20^2$	M1 A2(1, 0)
	(=19129.6 - 16000 = 3129.6) R = 52 (N) accept 52.2	M1 A1 <u>5</u>
	(b) $-8.1 = 20\sin\alpha \times t - \frac{1}{2}gt^2$	M1 A2(1, 0)
	$4.9t^2 - 12t - 8.1 = 0$ t = 3 (s)	M1 A1 <u>5</u>
	(c) $20\cos\alpha \times 3 = 16 \times 3 = 48$ (m) ft their t	M1 A1ft 2
	(d) Energy $\frac{1}{2}mv^2 - \frac{1}{2}m \times 20^2 = m \times 9.8 \times 8.1$	M1 A2(1, 0)
	$v = \sqrt{(558.56)} \approx 24 (m s^{-1})$ accept 23.6	M1 A1 <u>5</u> 17
	Alternative to (d)	
	$\uparrow v_y = 12 - 3g = -17.4$ $\rightarrow v_x = 16$	M1 A1 A1
	$v = \sqrt{(17.4^2 + 16^2)} \approx 24 \text{ (m s}^{-1})$ accept 23.6	M1 A1 <u>5</u>

January 2005

6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $M(A)$ $W \times 4a = T \times 8a \sin \theta$ Using a value of $\sin \theta$ and solving $T = \frac{5}{6}W *$ cso (b) $\rightarrow X = T \cos \theta$ $= \frac{2}{3}W$	M1 A1 M1 A1 <u>4</u> M1 A1 A1 <u>3</u> 7
2.	(a) circle rectangle plate Mass ratios 9π 200; $200-9\pi$ Centres of mass 6 10 \overline{x} $9\pi \times 6 + (200-9\pi)\overline{x} = 200 \times 10$ $\overline{x} \approx 10.7$ (cm) cao	B1; B1ft B1 M1 A1 <u>5</u>
	(b) $\tan \theta = \frac{5}{10.7}$ ft their \overline{x} $\theta \approx 25^{\circ}$ cao	M1 A1 ft A1 <u>3</u> 8

١

Question Number	Scheme	Marks
3.	(a) KE lost is $\frac{1}{2} \times 0.6 \times (10^2 - 9^2)$ (= 5.7 J) PE lost is $0.6 \times 9.8 \times 12 \sin 30^\circ$ (= 35.28 J) Total loss in energy is 41.0 (J) accept 41	B1 B1 M1 A1 <u>4</u>
	(b) $R = 0.6 \times 9.8 \times \cos 30^{\circ} (\approx 5.09)$ WE $40.98 = \mu \times 0.6 \times 9.8 \times \cos 30^{\circ} \times 12$ ft their (a) $\mu \approx 0.67$ or 0.671	B1 M1 A1ft M1 A1 <u>5</u> 9
	Alternative for (b) $a = \frac{9^2 - 10^2}{2 \times 12} \left(= (-)\frac{19}{24} \right) \qquad \text{awrt } 0.79$	B1
	N2L $mg \sin 30^{\circ} - \mu mg \cos 30^{\circ} = m(-\frac{19}{24})$ ft their <i>a</i> $\mu \approx 0.67$ or 0.671	M1 A1ft M1 A1 <u>5</u>
4.	(a) $\mathbf{\ddot{r}} = 6\mathbf{i} + (2t+3)\mathbf{j}$ $\mathbf{F} = 0.4(6\mathbf{i}+11\mathbf{j})$ 0.4×something obtained by differentiation, with $t = 4$ $ \mathbf{F} = \sqrt{(2.4^2 + 4.4^2)}$ modulus of a vector ≈ 5.0 accept more accurate answers (b) $\mathbf{r} = (3t^2 + 4t)\mathbf{i} + (\frac{1}{3}t^3 + \frac{3}{2}t^2)\mathbf{j}(+\mathbf{C})$ Using boundary values, $\mathbf{r} = (3t^2 + 4t - 3)\mathbf{i} + (\frac{1}{3}t^3 + \frac{3}{2}t^2 + 4)\mathbf{j}$ $t = 4$, $\mathbf{r} = 61\mathbf{i} + 49\frac{1}{3}\mathbf{j}$ $OS = \sqrt{(61^2 + 49\frac{1^2}{3})} \approx 78$ (m) accept more accurate answers	B1 M1 M1 A1 <u>4</u> M1 A1 A1 A1 M1 A1 <u>5</u> 9

Question Number	Scheme	Marks
5.	(a) $50000 = F \times 25 \ (F = 2000)$ or equivalent $\rightarrow F = R + 750$ $R = 1250 \ \ast$ cso	M1 M1 A1 <u>3</u>
	(b) N2L $1500+2000 = 2500a$ ignore sign of a $a = 1.4 \text{ (m s}^{-2} \text{)}$ cao	M1 A1 A1 <u>3</u>
	(c) Trailer: $T + R = 1500 \times 1.4$ or Car: $T - 1500 - 750 = 1000 \times -1.4$ T = 850 (N)	M1 A1 <u>2</u>
	(d) $25^2 = 2 \times 1.4 \times s \ (s = 223.2)$ $W = 1500 \times s \qquad \text{ft their } s$ $= 335 \ (kJ) \qquad \text{accept } 330$	M1 M1 A1ft A1 <u>4</u>
	(e) Resistances <u>vary</u> with <u>speeds</u>	B1 <u>1</u> 13
б.	$\begin{array}{cccc} 2u & u & (a) & LM & 6mu - 2mu = 3mx + 2my \\ \hline 3m & 2m & NEL & y - x = 3eu \\ \hline & & Solving to & y = \frac{1}{5}u(9e+4) * cso \end{array}$	M1 A1 B1 M1 A1 <u>5</u>
	x y (b) Solving to $x = \frac{2}{5}u(2-3e)$ oe $x < 0 \implies e > \frac{2}{3}$ $\frac{2}{3} < e \mid 1$ ft their e for glb	M1 A1 M1 A1 A1ft <u>5</u>
	(c) $2m\left[\frac{1}{5}u(9e+4)+u\right] = \frac{32}{5}mu$ Solving to $e = \frac{7}{9}$ awrt 0.78	M1 A1 M1 A1 <u>4</u> 14

Question Number	Scheme	Marks
7.	(a) $\uparrow u_y = 32 \times \frac{3}{5} (=19.2)$ -20 = 19.2t - 4.9t ² -1 each error $t \approx 4.8 \text{ or } 4.77 \text{ (s)}$	B1 M1 A2(1, 0) A1 <u>5</u>
	(b) $\rightarrow u_x = 32 \times \frac{4}{5} (= 25.6)$ $d = 25.6 \times 4.77$ $\approx 120 \text{ or } 122 \text{ (m)}$	B1 M1 A1 <u>3</u>
	(c) $\uparrow v_y^2 = 19.2^2 + 2 \times 9.8 \times 4 \left[v_y^2 = 447.04, v_y \approx 21.14 \right]$ $V^2 = 447.04 + 25.6^2$ $V = 33 \text{ or } 33.2 (\text{m s}^{-1})$	M1 M1 A1 A1 <u>4</u>
	(d) $\tan \theta = \frac{21.14}{25.6}$ (or $\cos \theta = \frac{25.6}{33.2}$,) ft their components or resultant	M1 A1ft
	$H \approx 40^{\circ} \text{ or } 39.6^{\circ}$ Alternative for (c) $\frac{1}{2}m(V^{2} - 32^{2}) = mg \times 4$ $V^{2} = 1102.4$ $V = 33 \text{ or } 33.2 \text{ (m s}^{-1})$	A1 <u>3</u> 15 M1 A1 M1 A1 <u>4</u>
	There is a maximum penalty of one mark per question for not rounding to appropriate accuracy.	

GCE Edexcel GCE Mechanics M2 (6678)

Summer 2005

Mark Scheme (Results)

advancing learning, changing lives

June 2005 6678 Mechanics M2 Mark Scheme

6678 Mechanics

June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

7 (a)	$PE \text{ lost} = 3 \times g \times 8 \sin 30 = 3 \times g \times 8 \times 0.5 = 117.6 \text{ J} \approx 118 \text{ J}$		M1 A1		
	or 120	OJ	(2)		
(b)	KE gained = $\frac{1}{2} \times 3 \times 5^2 = 37.5$ J		M1 A1		
	Work-energy: $F \times 8 = 117.6 - 37.5 = 80.1$		M1 A1√		
	$\Rightarrow F = 10.0125 \approx 10 \text{ N}$		A1		
				(5)	
(C)	$R = 3g\cos 30$ (= 25.46 N)		B1	.,	
	E D 10 0.202 0.20				
	$F = \mu R \Rightarrow \mu = \frac{1}{25.46} \approx 0.393 \text{ or } 0.39$		MIAI		
				(3)	
(d)	Work done by friction = 80.1 as before	M1			
	Work-energy: $\frac{1}{2} \times 3 \times v^2 = \frac{1}{2} \times 3 \times 2^2 + 117.6 - 80.1$		M1 A2,1,0 ⁻	V	
	\rightarrow $\nu \approx 5.39 \text{ or } 5.4 \text{ m s}^{-1}$	Δ1			
		,,,,		(5)	
				~ /	

PhysicsAndMathsTutor.com

January 2006

Question Number	Scheme	Marks	
1.	(a) Kinetic Energy = $\frac{1}{2} \times 3 \times 8^2 = 96$, J	B1 B1 (2	2)
	(b) $F = \mu 3g$	B1	
	Work-Energy $\mu 3gx12 = 96$	M1 A1ft	
	$\mu = 0.27 \text{ or } 0.272$	A1	
	Alternative for (b)	(4	1)
	$a = \frac{8^2 - 0^2}{2 - 12} = \frac{8}{2}$		
	$2 \times 12 3$ $\mu 3g$	B1	
	N2L $\mu 3g = 3 \times \frac{8}{3}$	M1 A1	
		A1	
	$\mu = 0.27 \text{ or } 0.272$	(4	!) 6
2.	(a) $\dot{\mathbf{r}} = (2t+4)\mathbf{i} + (3-3t^2)\mathbf{j}$	M1 A1	
	$\dot{\mathbf{r}}_3 = 10\mathbf{i} - 24\mathbf{j}$ substituting $t = 3$	M1	
	$ \dot{\mathbf{r}}_{3} = \sqrt{(10^{2} + 24^{2})} = 26 \text{ (m s}^{-1})$	M1 A1	
		(5	5)
	(b) $0.4(\mathbf{v} - (10\mathbf{i} - 24\mathbf{j})) = 8\mathbf{i} - 12\mathbf{j}$ ft their $\dot{\mathbf{r}}_3$	M1 A1ft	
	v = 30i - 54j (m s ⁻¹)	A1	•
		(3	5) 8
3.	(a) $T_r = \frac{12000}{15} (=800)$	M1	
	N2L $800 - R = 1000 \times 0.2$ ft their 800 R = 600 * cso	M1 A1ft A1	
		(4	1)
	(b) $1000g \times \frac{1}{40} + T_r = R$	M1 A1	
	$T_r = \frac{7000}{U}$	M1	
	$U \approx 20$ accept 19.7	M1 A1	_
		(5)) 9

PhysicsAndMathsTutor.com

January 2006

Question Number	Scheme	Marks
4.	Scheme (a) $3u$ $2u$ (m) (m)	Marks M1 A1 M1 A1 M1 A1 (6) M1 M1 A1 (3) M1 A1 (4) 13

PMT

January 2006

Question Number	Scheme	Marks	
5.	(a) $12m\overline{x} = 6m \times 9$ $\overline{x} = 4\frac{1}{2}$ $12m\overline{y} = 16m - 8m$ $\overline{y} = \frac{2}{3}$	M1 A1 M1 A1	
	(b) $(12+k)m \times 4 = 12m \times 4\frac{1}{2} + km \times 3$ ft their \overline{x} k = 6	M1 A1ft A1 (3))
	(c) $18m \times \lambda = 12m \times \frac{2}{3}, \implies \lambda = \frac{4}{9}$	M1 A1 (2))
	(d) $\tan \theta = \frac{4}{\frac{4}{9}}, \implies \theta \approx 83.7^{\circ}$ ft their λ , cao	M1 A1ft A1	
		(3) 12) 2
6.	(a) N A A A A A A W W A W W W W W W W W W W		
	μR $\uparrow R = 5W$ $M(B): 4Wa\cos\theta + W.2a\cos\theta + \mu R4a\sin\theta = R.4a\cos\theta$ Having enough equations & solving them for μ $\mu = 0.35$	B1 B1 M1 A1 M1 A1 (6))
	(b) $\uparrow S = (5+k)W$ Use of $F = 0.35S$ or $F \le 0.35S$ M(B): $kW4a\cos\theta + W.2a\cos\theta + F4a\sin\theta = S.4a\cos\theta$ Having enough equations & solving them for k $k = \frac{10}{7}$ awrt 1.42 $k \square \frac{10}{7}$ ft their k, accept > and decimals	B1 M1 M1 A1 M1 A1 A1ft (7)	3

January 2006

Question Number	Scheme	Marks	
7.	(a) $u_x = 11\cos 30^\circ$ $\rightarrow 11\cos 30^\circ \times t = 10 \implies t = 1.05$ (s) cao	B1 M1 A1	(3)
	(b) $s = \underline{11 \sin 30^{\circ}} \times t - 4.9t^2 \approx 0.37$ (2-1) - 0.37 = 0.63 (m)	B1 M1 A1 A1	(4)
	(c) $V\cos 30^\circ \times t = 10$ $\left(t = \frac{10}{V\cos 30^\circ}\right)$	M1 A1	
	$s = V \sin 30^{\circ} \times \frac{10}{V \cos 30^{\circ}} - \frac{4.9 \times 100}{V^{2} \cos^{2} \theta} = 1$ $V^{2} = 136.86$ $V \approx 12$ accept 11.7	M1 A1 M1 A1	(6)
	(d) B and/or T are not particles		(0)
	(They have extension giving a range of answers)	B1	(1) 14

Edexcel GCE

Mechanics Unit no. 6678/01

June 2006

Mark Scheme (Results) advancing learning, changing lives

Edexcel GCE Mechanics 6678/01

PMT

X

General Instructions

- 1. The total number of marks for the paper is 75.
- 2. Method (M) marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- 3. Accuracy (A) marks can only be awarded if the relevant method (M) marks have been earned.
- 4. (B) marks are independent of method marks.
- 5. Method marks should not be subdivided.
- 6. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. Indicate this action by 'MR' in the body of the script (but see also note 10).
- 7. If a candidate makes more than one attempt at any question:
 - (a) If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - (b) If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 8. Marks for each question, or part of a question, must appear in the right-hand margin and, in addition, total marks for each question, even where zero, must be ringed and appear in the right-hand margin and on the grid on the front of the answer book. It is important that a check is made to ensure that the totals in the right-hand margin of the ringed marks and of the unringed marks are equal. The total mark for the paper must be put on the top right-hand corner of the front cover of the answer book.
- 9. For methods of solution not in the mark scheme, allocate the available M and A marks in as closely equivalent a way as possible, and indicate this by the letters 'OS' (outside scheme) put alongside in the body of the script.
- 10. All A marks are 'correct answer only' (c.a.o.) unless shown, for example, as A1 f.t. to indicate that previous wrong working is to be followed through. In the body of the script the symbol should be used for correct f.t. and for incorrect f.t. After a misread, however, the subsequent A marks affected are treated as A f.t., but manifestly absurd answers should never be awarded A marks.
- 11. Ignore wrong working or incorrect statements following a correct answer.

M2 June 2006

Mark scheme

1.
$$a = 5 - 2t \implies v = 5t - t^{2}, + 6$$

$$v = 0 \implies t^{2} - 5t - 6 = 0$$

$$(t - 6)(t + 1) = 0$$

$$t = \underline{6s}$$

$$M1 \text{ A1, A1}$$

$$dep \text{ M1}$$

$$A1$$

$$(6)$$

2. (a)
$$\frac{P}{24} = 600 \text{ or } \frac{1000P}{24} = 600 \implies P = 14.4kW$$
 M1 A1

(2)

(b)
$$\frac{30000}{20} - 1200 \ge 9.8 \ge \sin \alpha - 600 = 1200a$$
 M1 A2,1,0
 $\Rightarrow a = 0.4 \le m^{-2}$ A1
(4)

3. (a)
$$I = \pm 0.5(16\mathbf{i} + 20\mathbf{j} - (-30\mathbf{i}))$$
 M1
 $= \pm (23\mathbf{i} + 10\mathbf{j})$ indep M1
magn $= \sqrt{(23^2 + 10^2)} \approx \underline{25.1 \text{ Ns}}$ indep M1 A1
(4)
(b) $\mathbf{v} = 16\mathbf{i} + (20 - 10t)\mathbf{j}$ M1
 $t = 3 \Rightarrow \mathbf{v} = 16\mathbf{i} - 10\mathbf{j}$ indep M1
 $v = \sqrt{(16^2 + 10^2)} \approx \underline{18.9 \text{ m s}^{-1}}$ indep M1 A1
(4)

4. (a) Total mass =
$$12m$$
 (used) M1
(i) M(AB): $m.3a/2 + m.3a/2 + m.3a + 6m.3a + 2m.3a = 12m.x$ indep M1 A1

$$\Rightarrow x = \frac{5}{2}a$$
 A1

(ii) M(AD): m.a + m.a + m.2a + 6m.2a = 12m.y indep M1 A1 $\Rightarrow y = \frac{4}{3}a$ (7)

(b)
$$\tan \alpha = \frac{2a - 4a/3}{5a/2}$$
 M1 A1 f.t.

$$\Rightarrow \alpha \approx \underline{14.9^{\circ}}$$
 A1 cao (3)

PMT

5. (a)
$$x_A = 28t$$
 $x_B = 35 \cos \alpha t$ B1 B1
Meet $\Rightarrow 28t = 35 \cos \alpha t$ $\Rightarrow \cos \alpha = 28/35 = 4/5 *$ M1 A1
(4)

(b)
$$y_A = 73.5 - \frac{1}{2} gt^2$$
 $y_B = 21t - \frac{1}{2} gt^2$ B1 B1

$$Meet \Rightarrow 73.5 = 21t \Rightarrow t = \underline{3.5 s} \qquad M1 A1$$
(4)

6. (a) S mg R, **M**(*A*): $S.3a = 4mg.2a \cos \alpha + mg.4a \cos \alpha$ M1 A1 4mg $=\frac{48}{5}mga \implies S = \frac{16}{5}mg *$ A1 (3) $R(\uparrow): R + S \cos e = 5mg$ **(b)** M1 A1 $R(\rightarrow)$: F = S sinceM1 A1 $F \le \mu R \implies \mu \ge \frac{48}{61} *$ dep on both previous M's M1 A1 (6) (c) Direction of *S* is perpendicular to plank or No friction at the peg B1 (1) $R = 4g \cos \alpha = 16g/5 \implies F = 2/7 \ge 16g/5$ M1 A1 7. (a) Work done = $F \ge 22.4 \text{ J}$ or 22 J indep M1 A1 (4) $\frac{1}{2} \times 4 \times u^2 = 22.4 + 4g \times 2.5 \times 3/5$ **(b)** M1 A2,1,0 f.t. $\Rightarrow u \approx 6.37 \text{ m s}^{-1}$ or 6.4 ms^{-1} A1cao (4)

(c)
$$\frac{1}{2} \ge 4 \ge v^2 = \frac{1}{2} \ge 4 \ge u^2 - 44.8$$
 M1 A2,1,0 f.t.
[OR $\frac{1}{2} \ge 4 \ge v^2 = 0 + 4g \ge 2.5 \ge 3/5 - 22.4$]
 $\Rightarrow v \approx 4.27 \le u^{-1}$ or 4.3 ms⁻¹ A1

(4)

8. (a)
$$u \xrightarrow{m \bigcirc} \bigcirc 4m$$

 $v \xleftarrow{m \bigcirc} \bigcirc 4m$
 $w = 4mw - mv$ M1 A1

$$eu = w + v$$
 M1 A1

$$\Rightarrow w = (\frac{1+e}{5})u, \quad v = (\frac{4e-1}{5})u \qquad \text{indep M1 A1 A1}$$
(7)

(b)
$$w' = (\frac{4+4e}{25})u$$
 B1 f.t.

Second collision $\Rightarrow w' > v$

$$\Rightarrow \frac{4+4e}{25} > \frac{4e-1}{5}$$

$$\Rightarrow e < 9/16$$
Also $v > 0 \Rightarrow e > 1/4$ Hence result (*)
$$B1$$
(5)

KE lost =
$$\frac{1}{2}mu^2 - [\frac{1}{2}.4m\{(u/5)(1+e)\}^2 + \frac{1}{2}m\{(u/5)(4e-1)\}^2]$$
 M1 A1 f.t.
= $\frac{3}{10}mu^2$
A1 cao

PMT

(3)

Mark Scheme (Results) January 2007

GCE

GCE Mathematics

Mechanics M2 (6678)

January 2007 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $\frac{1}{2}0.8(15^2 - 10^2) = 50$ (J)	M1 A1 <u>2</u>
	(b) $F = \mu R = \mu 0.8g$ Work-energy $\mu 0.8g \times 20 = 50$ ft their (a) $\mu \approx 0.32$ accept 0.319	M1 M1 A1ft A1 <u>4</u> 6
	Alternative for (b) $v^{2} = u^{2} + 2as \implies a = \frac{15^{2} - 10^{2}}{2 \times 20} = 3.125$ N2L $F = \mu mg = ma = 3.125m$ $\mu \approx 0.32$ accept 0.319	M1 M1 A1ft A1 <u>4</u>
	Alternative for (b) WE $F = \frac{50}{20}$ (= 2.5) $F = \mu R \Rightarrow \frac{50}{20} = \mu 0.8g$ ft their (a) $\mu \approx 0.32$	M1 M1 A1 ft A1 4
	The first M1 for (b) could be scored in (a): $v^2 = u^2 + 2as \Rightarrow 10^2 = 15^2 - 2 \times 20 \times (-)a \Rightarrow a = (-)\frac{125}{40}$ $F = ma \Rightarrow F = 2.5$ $WD = F \times d \Rightarrow 2.5 \times 20 = 50J$	(b)M1 (a)M1A1

Question Number	Scheme	Marks
3.	(a) Large Small Template Mass Ratios 24^2 8^2 , 512 anything in ratio $9:1:8$ (c.1810 c.200 c.1610) M(A) $9 \times 24 = 16 \times 1 + 8\overline{x}$ $\overline{x} = 25$ (cm) exact	B1, B1ft M1* A1 DM1* A1 <u>6</u>
	(b) M(axis) $11M = 12 \times \frac{1}{4}m$ ft their \overline{x} ($(36 - \overline{x})M = 12 \times \frac{1}{4}m$)	M1†A1ft
	$M = \frac{3}{11}m$ (o.e.e.)	DM1 † A1 <u>4</u> 10
4. (a)	u NEL $3v - (-v) = eu$	M1 A1
(b)	$u = 8v$ $w = 3v$ $LM = 8w$ $mv = -mv + 3kmv \text{ ft their } u$ $(m \times (u) = -mv + 3kmv)$ $k = 3$	A1 <u>3</u> M1 A1ft A1 <u>3</u>
(c)	$LM \qquad 9mv = -3my + 11my \text{ft their } k$ $NEL \qquad 2y = e \times 3v$	M1 A1ft M1
	$\begin{array}{ccc} & km & 1 \\ \hline & m \\ y & y \\ \end{array} & y = \frac{9}{8} v \Longrightarrow e = \frac{5}{4} \bigstar cso$	A1 <u>4</u>
	(d) $y = \frac{9}{8}v > v \implies$ further collision between P and Q A1 is cso – watch out for incorrect statements re. velocity	M1 A1 <u>2</u> 12

Question Number	Scheme	Marks
5.	Scheme (a) $M(A)$ $T \sin \theta \times 4a = mg \times 2a + 2mg \times 3a$ $T = \frac{8mg}{4} \times \frac{5}{3} = \frac{10}{3}mg$ Accept 32.7m, 33m (b) $\rightarrow R = T \cos \theta = \frac{10}{3}mg \times \frac{4}{5}; = \frac{8}{3}mg$ \bigstar cso ft their T (c) $\uparrow F + T \sin \theta = 3mg \Rightarrow F = mg$ $F = \mu R \Rightarrow \mu = \frac{3}{8}$ (a) Alternative approach: $\rightarrow R = T \cos \theta$ $\uparrow F + T \sin \theta = 3mg$ $M(B) F \times 4a = mg \times 2a + 2mg \times a \Rightarrow F = mg$ $F = \mu R \Rightarrow \mu = \frac{3}{8}$ (a) Alternative approach: $\rightarrow R = T \cos \theta$ $\uparrow F + T \sin \theta = 3mg$ $M(B) F \times 4a = mg \times 2a + 2mg \times a (\Rightarrow F = mg)$ $\Rightarrow mg + T \sin \theta = 3mg \Rightarrow T = \frac{2mg}{\sin \theta} = \frac{10mg}{3}$ If they use this method, watch out for F=mg just quoted in (c): M1A1	Marks M1* A1=A1 DM1* A1 <u>5</u> M1 A1ft; A1 <u>3</u> M1 A1ft M1 A1 <u>4</u> 12

2
ź
<u>5</u>
<u>3</u>
<u>3</u> 13

Question Number	Scheme	Marks
7.	(a) Energy $\frac{1}{2}m(24.5^2 - u^2) = mg \times 15$	M1 A1=A1
	u = 24.5 - 30g = 306.25 $u = \sqrt{306.25} = 17.5 $ ★ cso	A1 <u>4</u>
	(b) $\rightarrow u_x = u \cos \theta = 17.5 \times 0.8 = 14$	B1
	$\psi = \arccos \frac{14}{24.5} \approx 55^{\circ}$ accept 55.2°	M1 A1 <u>3</u>
	(0.96 rads, or 0.963 rads)	
	(c) $u_y = u \sin \theta = 17.5 \times 0.6 = 10.5$	B1
	$s = ut + \frac{1}{2}at^2 \implies -45 = 10.5t - 4.9t^2$	M1 A1
	leading to $t = 4.3$, awrt $t = 4.3$ or $t = 4\frac{2}{7}$	A1
	$\rightarrow BD = 14 \times 4\frac{2}{7}$ (14 x t) ft their t	M1 A1ft
	= 60 (m) only	A1 <u>7</u> 14
	Alternative for (2)	
	$\rightarrow u_x = u \cos \theta = 0.8u, \ \uparrow u_y = u \sin \theta = 0.6u$	
	$v_y^2 = 0.36u^2 + 2 \times 9.8 \times 15 = 0.36u^2 + 294$	
	$24.5^2 = u_x^2 + v_y^2 = 0.64u^2, +0.36u^2 + 294$	M1 A1,A1
	$u^2 = 306.25 \implies u = 17.5 \bigstar$ cso	A1 <u>4</u>
	Alternative for (b) $\rightarrow u_x = u \cos \theta = 17.5 \times 0.8 = 14$	B1
	$\uparrow v_y^2 = u^2 \sin^2 \theta + 2 \times 9.8 \times 15 = 404.25$	
	$\psi = \arctan \frac{\sqrt{404.25}}{14} \approx 55^{\circ} \qquad \text{accept } 55.2^{\circ}$	M1 A1 <u>3</u>
	Alternative for (c) Use of $y = x \tan \theta - \frac{g \sec^2 \theta}{2u^2} x^2$	M1
	$-45 = \frac{3}{4}x, -\frac{g}{2 \times 17.5^2} \times \frac{25}{16}x^2$	B1,A1
	$x^2 - 30x - 1800 = 0$ o.e. Factors or quadratic formula BD = 60 (m)	A1 M1 A1ft A1

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Mechanics M2 (6678)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

June 2007 6678 Mechanics M2 Mark Scheme

General:

For M marks, correct number of terms, dimensionally correct, all terms that need resolving are resolved.

Omission of g from a resolution is an accuracy error, not a method error.

Omission of mass from a resolution is a method error.

Omission of a length from a moments equation is a method error.

Where there is only one method mark for a question or part of a question, this is for a *complete* method.

Omission of units is not (usually) counted as an error.

When resolving, condone sin/cos confusion for M1, but M0 for tan or dividing by sin/cos.

Question Number	Scheme	Marks
1	Force exerted = $444/6$ (= 74 N)	B1
	$R + 90g \sin \alpha = 444/6$	M1 A1
	$\Rightarrow R = \underline{32 N}$	A1
		(4)
	 B1 444/6 seen or implied M1 Resolve parallel to the slope for a 3 term equation – condone sign errors and sin/cos confusion A1 All three terms correct – expression as on scheme or exact equivalent A1 32(N) only 	
2 .(a)	a = dv/dt = 6ti - 4j	M1 A1 (2)
(b)	Using F = $\frac{1}{2}a$, sub $t = 2$, finding modulus	M1, M1, M1
	e.g. at $t = 2$, $a = 12i - 4j$	
	F = 6i - 2j	
	$ F = \sqrt{6^2 + 2^2} \approx 6.32 \text{ N}$	A1(CSO) (4)
	M1 Clear attempt to differentiate. Condone i or j missing.	
	A1 both terms correct (column vectors are OK)	
	The 3 method marks can be tackled in any order, but for consistency on epen grid please enter as:	
	M1 F =m a (their a , (correct a or following from (a)), not v . F = $\frac{1}{2}$ a).	
	Condone a not a vector for this mark.	
	M1 subst $t = 2$ into candidate's vector F or a (a correct or following from (a), not v)	
	M1 Modulus of candidate's \mathbf{F} or \mathbf{a} (not \mathbf{v})	
	A1 CSO All correct (beware fortuitous answers e.g. from $6\mathbf{i}$ +4j)) Accept 6.3, awrt	
	6.32, any exact equivalent e.g. $2\sqrt{10}, \sqrt{40}, \frac{\sqrt{160}}{2}$	

PhysicsAndMathsTutor.com

PMT

edexcel

4. (a)	PE lost = $2mgh - mgh \sin \alpha$ (= $7mgh/5$)	M1 A1
(b)	Normal reaction $R = mg \cos \alpha$ (= 4mg/5)	(2) B1
	Work-energy: $\frac{1}{2}mv^2 + \frac{1}{2}.2mv^2 = \frac{7mgh}{5} - \frac{5}{8}.\frac{4mg}{5}.h$	M1 A2,1,0
	$\Rightarrow \frac{3}{2}mv^2 = \frac{9mgh}{10} \Rightarrow v^2 = \frac{3}{5}gh$	A1 (5)
	 M1 Two term expression for PE lost. Condone sign errors and sin/cos confusion, but must be vertical distance moved for A A1 Both terms correct, sinα correct, but need not be simplified. Allow 13.72mh. Unambiguous statement. 	
	 B1 Normal reaction between A and the plane. Allow when seen in (b) provided it is clearly the normal reaction. Must use cosq but need not be substituted. M1(NB QUESTION SPECIFIES WORK & ENERGY) substitute into equation of the form PE lost = Work done against friction plus KE gained. Condone sign errors. They <i>must include KE of both particles</i>. 	
	A1A1 All three elements correct (including signs) A1A0 Two elements correct, but follow their GPE and μx their Rx <i>h</i> . A1 V ² correct (NB <i>kgh</i> specified in the Q)	

PMT

edexcel

1 A1 (4) 1 .1
1 A1 (4) 1
1 A1 (4) 1 .1
1 A1 (4) 1
1 A1 (4) 1 .1
1 A1 (4) 1
1 A1 (4) 1
1 A1 (4) 1
.1 A1 (4) 1 .1
.1 A1 (4) 1
(4) 1 .1
(4) 1 .1
(4) 1 1
1
1
1 \1
1
11
1
(5)

edexcel

6. (a)	$0 = (35 \sin \alpha)^2 - 2gh$ $h = \underline{40 \text{ m}}$	M1 A1 A1 (3)
(b)	$x = 168 \implies 168 = 35 \cos \alpha \cdot t (\Rightarrow t = 8s)$	M1 A1
	At $t = 8$, $y = 35 \sin \alpha \times t - \frac{1}{2}gt^2$ (= 28.8 - $\frac{1}{2}g.8^2 = -89.6$ m)	M1 A1
	Hence height of $A = \underline{89.6 \text{ m}}$ or 90 m	DM1 A1 (6)
(c)	$\frac{1}{2}mv^2 = 1/2.m.35^2 + mg.89.6$	M1 A1
	\Rightarrow v = <u>54.6 or 55 m s⁻¹</u>	A1 (3)
	M1 Use of $v^2 = u^2 + 2as$, or possibly a 2 stage method using $v = u + at$ and $s = ut + \frac{1}{at^2}at^2$	
	A1 Correct expression. Alternatives need a complete method leading to an equation in h only. A1 40(m) No more than 2sf due to use of g .	
	M1 Use of $x = u\cos\alpha$. t to find t. A1 $168 = 35 \times their \cos\alpha \times t$	
	M1 Use of $s = ut + \frac{1}{2}at^2$ to find vertical distance for their <i>t</i> . (AB or top to B)	
	A1 $y = 35 \sin \alpha \times t - \frac{1}{2}gt^2$ (<i>u</i> , <i>t</i> consistent)	
	DM1 This mark dependent of the previous 2 M marks. Complete method for AB. Eliminate t and solve for s. A1 cso.	
	(NB some candidates will make heavy weather of this, working from A to max height (40m) and then down again to B (129.6m))	
	OR: Using $y = x \tan \alpha - \frac{g x^2 \sec^2 \alpha}{2u^2}$	
	M1 formula used (condone sign error) A1 x,u substituted correctly	
	M1 α terms substituted correctly. A1 fully correct formula	
	M1, A1 as above	
	M1 Conservation of energy: change in $KE =$ change in GPE. All terms present. One side correct (follow their h).	
	(will probably work A to B, but could work top to B). A1 Correct expression (follow their h)	
	A1 54.6 or 55 (m/s) OR: M1 horizontal and vertical components found and combined using Pythagoras	
	$v_x = 21$ $v_y = 28 - 9.8x8$ (-50.4)	
	A1 v_x and v_y expressions correct (as above). Follow their <i>h</i> , <i>t</i> . A1 54.6 or 55	
	NB Penalty for inappropriate rounding after use of g only applies once per question.	

Question Number	Scheme	Marks
7.	<i>u</i>	
	$m \longrightarrow v$ $5m \longrightarrow w$	
(a)	CLM: $mv + 5mw = mu$ NLI: $w - v = eu$	B1 B1
	Solve v: $v = \frac{1}{6}(1-5e)u$, so speed $= \frac{1}{6}(5e-1)u$ (NB – answer given on paper)	M1* A1
	Solve w: $w = \frac{1}{6}(1 + e)u$ * The M's are dependent on having equations (not necessarily correct) for CLM and NLI	M1* A1 (6)
(b)	After <i>B</i> hits <i>C</i> , velocity of $B = "v" = \frac{1}{6}(1-5,\frac{4}{5})u = -\frac{1}{2}u$ velocity $< 0 \Rightarrow$ change of direction $\Rightarrow B$ hits <i>A</i>	M1 A1 A1 CSO (3)
(c)	velocity of C after = $\frac{3}{10}u$	B1
	When B hits A, "u" = $\frac{1}{2}u$, so velocity of B after = $-\frac{1}{2}(-\frac{1}{2}u) = \frac{1}{4}u$	B1
	Travelling in the same direction but $\frac{1}{4} < \frac{3}{10} \implies \underline{\text{no second collision}}$	M1 A1 CSO (4)
	 B1 Conservation of momentum – signs consistent with their diagram/between the two equations B1 Impact equation M1 Attempt to eliminate w A1 correct expression for v. Q asks for speed so final answer must be verified positive with reference to e>1/5. Answer given so watch out for fudges. M1 Attempt to eliminate v A1 correct expression for w 	
	M1 Substitute for e in speed or velocity of P to obtain v in terms of u. Alternatively, can obtain v in terms of w A1 (+/-) u/2 ($v = -\frac{5w}{2}$)	
	A1 CSO Justify direction (and correct conclusion)	
	B1 speed of C = value of w = $(\pm)\frac{3u}{10}$ (Must be referred to in (c) to score the B1.)	
	B1 speed of B after second collision $(\pm)\frac{1}{4}u$ or $(\pm)\frac{5}{6}w$	
	M1 Comparing their speed of <i>B</i> after 2^{nd} collision with their speed of <i>C</i> after first collision.	
	A1 CSO. Correct conclusion .	

8. (a)	$0 \le t \le 4: \qquad a = 8 - 3t$ $a = 0 \Longrightarrow t = 8/3 \text{ s}$ $\rightarrow v = 8 \cdot \frac{8}{3} - \frac{3}{2} \cdot \left(\frac{8}{3}\right)^2 = \frac{32}{3} \text{ (m/s)}$	M1 DM1 DM1 A1
	second M1 dependent on the first, and third dependent on the second.	(4)
(b)	$s = 4t^2 - t^3/2$	M1
	t = 4: $s = 64 - 64/2 = 32 m$	M1 A1
(c)	$t > 4$: $v = 0 \implies t = \underline{8 \ s}$	(3) B1 (1)
(d)	<i>Either</i> $t > 4$ $s = 16t - t^2 (+ C)$	M1
	$t = 4, s = 32 \rightarrow C = -16 \implies s = 16t - t^2 - 16$	M1 A1
	$t = 10 \rightarrow s = 44 \text{ m}$	M1 A1
	But direction changed, so: $t = 8$, $s = 48$	M1
	Hence total dist travelled = $48 + 4 = 52 \text{ m}$	DM1 A1
	Or (probably accompanied by a sketch?)	(0)
	t=4 v=8, t=8 v=0, so area under line = $\frac{1}{2} \times (8-4) \times 8$	M1A1A1
	t=8 v=0, t=10 v=-4, so area above line = $\frac{1}{2} \times (10-8) \times 4$	M1A1A1
	Hence total distance = $32(\text{from b}) + 16 + 4 = 52 \text{ m.}$	M1A1 (8)
	Or M1, A1 for t > 4 $\frac{dv}{dt} = -2$, =constant	
	t=4, v=8; t=8, v=0; t=10, v=-4	
	M1, A1 $s = \frac{u+v}{2}t = \frac{32}{2}t$, =16 working for t = 4 to t = 8	
	M1, A1 $s = \frac{u+v}{2}t = \frac{-4}{2}t$, =-4 working for t = 8 to t = 10	
	M1, A1 total = $32+14+4$, = 52	

M1 Differentiate to obtain acceleration DM1 set acceleration. = 0 and solve for t	
DM1 set acceleration. $= 0$ and solve for t	
DM1 use their t to find the value of v	
A1 32/3, 10.70ro better	
OR using trial an improvement:	
M1 Iterative method that goes beyond integer values	
M1 Establish maximum occurs for t in an interval no bigger than $2.5 < t < 3.5$	
M1 Establish maximum occurs for t in an interval no bigger than $2.6 < t < 2.8$	
A1 60	
Or M1 Find/state the coordinates of both points where the curve cuts the x axis.	
DM1 Find the midpoint of these two values.	
M1A1 as above.	
Or M1 Convincing attempt to complete the square:	
$3t^2$ 3, 8, 3, 64	
DM1 substantially correct $8t - \frac{1}{2} = -\frac{1}{2}(t - \frac{1}{3})^2 + \frac{1}{2} \times \frac{1}{9}$	
DM1 Max value = constant term	
A1 CSO	
A1 $32(m)$ only B1 $t = 8$ (s) only	
 Integrate 16-2t Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these vo marks occurring with the next two. First A1 will be for 4 correctly substituted.) s = 16t - t² - 16 or equivalent substitute t = 10 	1.
A1 Integrate 16-2t A1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these wo marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 $s = 16t - t^2 - 16$ or equivalent A1 substitute t = 10 A1 44	n.
M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 $s = 16t - t^2 - 16$ or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c))	1.
M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 $s = 16t - t^2 - 16$ or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m)	n.
M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 $s = 16t - t^2 - 16$ or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m)	n.
 M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 s = 16t - t² - 16 or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m) OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape 	n. e
M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 $s = 16t - t^2 - 16$ or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m) OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles:	n. e
 M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 s = 16t - t² - 16 or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m) OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles: M1 distance for t = 4 to t = candidate's 8 = ½ x change in time x ch	n. e
 M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 s = 16t - t² - 16 or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m) OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles: M1 distance for t = 4 to t = candidate's 8 = ½ x change in time x change in speed. 	n. e
 M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 s = 16t - t² - 16 or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m) OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles: M1 distance for t = 4 to t = candidate's 8 = ½ x change in time x change in speed. A1 8-4 	n. e
 M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 s = 16t - t² - 16 or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m) OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles: M1 distance for t = 4 to t = candidate's 8 = ½ x change in time x change in speed. A1 8-4 A1 8-4 A1 8-0 M1 distance for t = their 8 to t = 10 =16 x change in time x change in speed. 	n. e
 M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 s = 16t - t² - 16 or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m) OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles: M1 distance for t = 4 to t = candidate's 8 = ½ x change in time x change in speed. A1 8-4 A1 8-0 M1 distance for t = their 8 to t = 10 =½ x change in time x change in speed. A1 10-8 	n. e
 M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 s = 16t - t² - 16 or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m) OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles: M1 distance for t = 4 to t = candidate's 8 = ½ x change in time x change in speed. A1 8-4 A1 8-0 M1 distance for t = their 8 to t = 10 =½ x change in time x change in speed. A1 10-8 A1 0-(-4) 	n. e
 M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 s = 16t - t² - 16 or equivalent M1 substitute t = 10 A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m) OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles: M1 distance for t = 4 to t = candidate's 8 = ½ x change in time x change in speed. A1 8-4 A1 8-0 M1 distance for t = their 8 to t = 10 =½ x change in time x change in speed. A1 10-8 A1 0-(-4) M1 Total distance = their (b) plus the two triangles (=32 + 16 + 4). 	n. e

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6678/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

January 2008 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks	6
1.	(a) KE lost is $\frac{1}{2} \times 2.5 \times 8^2 = 80$ (J)	M1 A1	(2)
	(b) Work energy $80 = R \times 20$ ft their (a) R = 4	M1 A1 ft A1	(3) [5]
	Alternative to (b) $0^2 = 8^2 - 2 \times a \times 20 \implies a = (-)1.6$		
	N2L $R = 2.5 \times 1.6$ ft their $a = 4$	M1 A1ft A1	(3)
2.	(a) $\dot{\mathbf{p}} = (6t-6)\mathbf{i} + (9t^2-4)\mathbf{j} (m s^{-1})$	M1 A1	(2)
	(b) $9t^2 - 4 = 0$ $t = \frac{2}{3}$	M1 DM1 A1	(3)
	(c) $t=1 \Rightarrow \dot{\mathbf{p}}=5\mathbf{j}$ ft their \dot{p} (+/-) $2\mathbf{i}-6\mathbf{j}=0.5(\mathbf{v}-5\mathbf{j})$	B1 <mark>ft</mark> M1	
	$\mathbf{v} = 4\mathbf{i} - 7\mathbf{j} (\mathbf{m}\mathbf{s}^{-1})$	M1 A1	(4) [9]

Question Number	Scheme	Marks
3.	(a) $20000 = 16F (F = 1250)$ $\overrightarrow{P} = 550 + 1000 \times 9.8 \sin \theta$ ft their F Leading to $\sin \theta = \frac{1}{14}$ * cso	M1 A1 M1 A1ft A1 (5)
	(b) N2L 7 550 + 1000 × 9.8 × sin θ = 1000 <i>a</i> (550 + 1000 × 9.8 × $\frac{1}{14}$ = 1000 <i>a</i>) or 1250 = 1000 <i>a</i> (<i>a</i> = (-)1.25)	M1 A1
	$v^{2} = u^{2} + 2as \implies 16^{2} = 2 \times 1.25 \times y$ $y \approx 102 \qquad \text{accept } 102.4, 100$ Alternative to (b) Work-Energy $\frac{1}{2} \times 1000 \times 16^{2} - 1000 \times 9.8 \times \frac{1}{14} y = 550 y$ $y \approx 102 \qquad \text{accept } 102.4, 100$	M1 A1 (4) [9] M1 M1 A1 A1 (4)
4.	(a) Triangle Circle S Mass ratio 126 9π 126 -9π (28.3) (97.7) \overline{x} 7 5 \overline{x} \overline{y} 4 5 \overline{y} 4, 7 seen	B1 B1ft B1
	$126 \times 7 = 9\pi \times 5 + (126 - 9\pi) \times \overline{x} \text{ft their table values}$ $\overline{x} \approx 7.58 (\frac{882 - 45\pi}{126 - 9\pi}) \text{awrt 7.6}$ $126 \times 4 = 9\pi \times 5 + (126 - 9\pi) \times \overline{y} \text{ft their table values}$ $\overline{y} \approx 3.71 (\frac{504 - 45\pi}{126 - 9\pi}) \text{awrt 3.7}$	M1 A1ft A1 M1 A1ft A1 (9)
	(b) $\tan \theta = \frac{\overline{y}}{21 - \overline{x}}$ ft their $\overline{x}, \overline{y}$ $\theta \approx 15^{\circ}$	M1 A1ft A1 (3) [12]

Question Number	Scheme	Marks
5.	(a) $N = \frac{N}{2a} \frac{B}{30^{\circ}}$ $M(A) \qquad N \times 4a \cos 30^{\circ} = 3mg \times a \sin 30^{\circ} + mg \times 2a \sin 30^{\circ}$ $N = \frac{5}{4}mg \tan 30^{\circ} (= \frac{5}{4\sqrt{3}}mg = 7.07m)$ $\rightarrow F_r = N , \uparrow R = 4mg$ Using $F_r = \mu R$ $\frac{5}{4\sqrt{3}}mg = \mu R \text{for their } R$ $\mu = \frac{5}{16\sqrt{2}} \qquad \text{awrt } 0.18$	M1 A2(1,0) DM1 A1 B1, B1 B1 M1 A1 (10)
	Alternative method: M(B): $mg \times 2a \sin 30 + 3mg \times 3a \sin 30 + F \times 4a \cos 30 = R \times 4a \sin 30$ $11mga \sin 30 + F \times 4a \cos 30 = R \times 4a \sin 30$ $\frac{11mg}{2} + F \frac{4\sqrt{3}}{2} = 2R$ $\uparrow R = 4mg$, Using $F_r = \mu R$ $8\mu\sqrt{3} = \frac{5}{2}$, $\mu = \frac{5}{16\sqrt{3}}$	[10] M1A3(2,1,0) DM1A1 B1 B1 M1 A1

6.	(a) $ \rightarrow 30 = 2ut $ $ \uparrow -47.5 = 5ut - 4.9t^{2} $ $ -47.5 = 75 - 4.9t^{2} $ $ t^{2} = \frac{75 + 47.5}{4.9} (= 25) $ $ t = 5 $ $ cso$	B1 M1 A1 DM1 DM1 A1 (6)
	(b) $30 = 2ut \implies 30 = 10u \implies u = 3$	M1 A1 (2)
	(c) $\uparrow \qquad \dot{y} = 5u - 9.8t = -34$ M1 requires both $\rightarrow \qquad \dot{x} = 2u = 6$ \dot{x} and \dot{y} $v^2 = 6^2 + (-34)^2$ $v \approx 34.5 (m s^{-1})$ accept 35	M1 A1 A1 DM1 A1
	Alternative to (c) $\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2 = m \times g \times 47.5$ with $v_A^2 = 6^2 + 15^2 = 261$	(5) [13] M1 A(2,1,0)
	$v_B^2 = 261 + 2 \times 9.8 \times 47.5 \ (=1192)$ $v_B \approx 34.5 \ (\text{m s}^{-1}) \qquad \text{accept } 35$ BEWARE : Watch out for incorrect use of $v^2 = u^2 + 2as$	DM1 A1 (5)

Question Number	Scheme	Marks
7.	(a) $2u$ u 2m $3mx$ y	
	LM $4mu + 3mu = 2mx + 3my$ NEL $y - x = \frac{1}{2}u$ Solving to $y = \frac{8}{5}u$ * cso	M1 A1 B1 M1 A1 (5)
	(b) $x = \frac{11}{10}u \qquad \text{or equivalent}$ Energy loss $\frac{1}{2} \times 2m\left(\left(2u\right)^2 - \left(\frac{11}{10}u\right)^2\right) + \frac{1}{2} \times 3m\left(u^2 - \left(\frac{8}{5}u\right)^2\right)$ $= \frac{9}{20}mu^2$	B1 M1 A(2,1,0) A1 (5)
	(c) $\frac{\frac{8}{5}u}{3m}$ m s $mLM \frac{24}{5}mu = 3ms + mtNEL t - s = \frac{8}{5}euSolving to s = \frac{2}{5}u(3-e)$	M1 A1 B1 M1 A1
	For a further collision $\frac{11}{10}u > \frac{2}{5}u(3-e)$ $e > \frac{1}{4}$ ignore $e \le 1$	M1 A1 (7) [17]

GCE Edexcel GCE Mathematics Mechanics 2 M2 (6678)

June 2008

advancing learning, changing lives

Final Mark Scheme

Edexcel GCE

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

June 2008 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks
1.	$\frac{1600}{T_r}$ Resolve \overrightarrow{r} : $T_r + \frac{2000g \times \sin \alpha}{(T_r = 816)} = 1600$ $P = 816 \times 14 (W)$ ft their T_r $\approx 11 (kW)$ accept 11.4	M1 <u>A1</u> A1 M1 A1ft A1 cso (6) [6]
2.	(a) $3u \qquad 2u \qquad 3u \qquad 2u \qquad 3m \qquad 3$	B1 M1 A1 DM1 A1 (5) B1 M1 A1ft A1 (4) [9]

Question Number	Scheme	Marks
3.		
	(a $\Delta KE = \frac{1}{2} \times 3.5(12^2 - 8^2)$ (=140) or KE at A, B correct separately	B1
	$\Delta PE = 3.5 \times 9.8 \times 14 \sin 20^{\circ} (\approx 164.238) \text{ or PE at A, B correct separately}$ $\Delta E = \Delta KE + \Delta PE \approx 304, 300$	M1 A1 DM1 A1 (5)
	(b) Using Work-Energy $F_r = \mu \times 3.5g \cos 20^{\circ}$ $304.238 \dots = F_r \times 14$ ft their (a), F_r $304.238 \dots = \mu 3.5g \cos 20^{\circ} \times 14$ $\mu \approx 0.674$, 0.67	M1 A1 M1 A1 ft A1 (5)
		[10]
	Alternative using N2L	
	$F_r = \mu \times 3.5g \cos 20^\circ$ $v^2 = u^2 + 2as \implies 8^2 = 12^2 - 2a \times 14$ $\left(a = \frac{20}{2}\right)(2.857)$	M1 A1
	N2L R \mathbf{k} : {their F_r }- $mg \sin 20^\circ = ma$ ft their F_r . Leading to $\mu \approx 0.674$ or 0.67	M1 A1ft A1 (5)
4.	(a) N2L $(6t-5)\mathbf{i} + (t^2 - 2t)\mathbf{j} = 0.5\mathbf{a}$	M1
	$\mathbf{a} = (12t - 10)\mathbf{i} + (2t^2 - 4t)\mathbf{j}$	A1
	$\mathbf{v} = (6t^2 - 10t)\mathbf{i} + (\frac{2}{3}t^3 - 2t^2)\mathbf{j}$ (+C) ft their a	M1 A1ft+A1ft
	$\mathbf{v} = (6t^2 - 10t + 1)\mathbf{i} + (\frac{2}{3}t^3 - 2t^2 - 4)\mathbf{j}$	A1 (6)
	(b) When $t = 3$, $v_3 = 25i - 4j$	M1
	-5i + 12j = 0.5(v - (25i - 4j)) ft their v ₃	M1 A1ft
	$\mathbf{v} = 15\mathbf{i} + 20\mathbf{j}$	A1
	$ \mathbf{v} = \sqrt{(15^2 + 20^2)} = 25 \text{ (ms^2)}$ cso	M1 A1 (6) [12]

Question Number			Scheme		Marks
6.	(a)	M(Oy)	$(8+k)m \times 6.4 = 5m \times 8 + km \times 8$ $1.6k = 11.2 \implies k = 7 $ *	CSO	M1 A1 DM1 A1 (4)
	(b)	M(Oy)	$27m\overline{x} = 12m \times 4 + 5m \times 8 + 7m \times 8$ $\overline{x} = \frac{16}{3}$	5.3 or better	M1 A1 A1
		M(Ox)	$27m\overline{y} = 12m \times 2.5 + 8m \times 5$ $\overline{y} = \frac{70}{27}$	2.6 or better	M1 A1 A1 (6)
	(c)		$\tan \theta = \frac{\overline{y}}{\overline{x}} = \frac{35}{72}$ $\theta \approx 26^{\circ}$	awrt 25.9 °	M1 A1ft A1 (3) [13]

Question Number			Scheme		Marks
7.	(a)	(\downarrow)	$u_y = 25 \sin 30^\circ (= 12.5)$ $12 = 12.5t + 4.9t^2$ Leading to $t = 0.743$, 0.74	-1 each error	B1 M1 A2 (1, 0) A1 (5)
	(b)	(\rightarrow)	$u_x = 25\cos 30^\circ \left(=\frac{25\sqrt{3}}{2} \approx 21.65\right)$		B1
			$OB = 25\cos 30^\circ \times t \ (\approx 16.09458)$	ft their (a)	M1 A1ft
			$TB \approx 1.1 \text{ (m)}$	awrt 1.09	A1 (4)
	(c)	(\rightarrow)	$15 = u_x \times t \Longrightarrow t = \frac{15}{u_x} \left(=\frac{2\sqrt{3}}{5} \approx 0.693 \text{ or } 0\right)$	0.69)	M1 A1
	either		(\downarrow) $v_{y} = 12.5 + 9.8t \ (\approx 19.2896)$		M1
			$V^{2} = u_{x}^{2} + v_{y}^{2} (\approx 840.840)$ $V \approx 29 \text{ (ms}^{-1}\text{)}, 29.0$		M1 A1 (5) [14]
	or		(\downarrow) $s_y = 12.5t + 4.9t^2 (\approx 11.0)$		M1
			$\frac{1}{2}m \times 25^2 + mg \times s_y = \frac{1}{2}mv^2$		
			$V \approx 29 \left(\mathrm{ms}^{-1}\right) , 29.0$		M1A1

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6678/01)

January 2009 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Mai	ŕks
1	F = ma parallel to the slope, $T - 1500g\sin\theta - 650 = 1500a$	M1* A1	
	Tractive force, $30000 = T \times 15$	M1*	
	$a = \frac{\frac{30000}{15} - 1500(9.8)(\frac{1}{14}) - 650}{1500}$	d*M1	
	<u>0.2</u> (m s ⁻²)	A1	
			(5) [5]
2 (a)	$R(\uparrow): R = 25g + 75g(=100g)$	B1	
	$s \swarrow F = \mu R \Rightarrow F = \frac{11}{25} \times 100g$	M1	
	c = 44g (=431)	A1	
(b)	$M(A):$ $25g \times 2\cos\beta + 75g \times 2.8\cos\beta$ $= S \times 4\sin\beta$ $R(\leftrightarrow): F = S$	M1 A2,1,0	(3)
	$\frac{\beta}{25g} = 176g\sin\beta = 260g\cos\beta$	M1A1	
	$\beta = 56(^{\circ})$	A1	
			(6)
(c)	So that Reece's weight acts directly at the point <i>C</i> .	B1	[10]

Questic Numbe	on er	Scheme	Marks	
3 ((a)	$R \qquad R(\updownarrow): R = 10g$	B1	
		$F = \mu R \implies F = \frac{4}{7} (10g) = 56$	B1	
		$\therefore \text{ WD against friction} = \frac{4}{7} (10g)(50)$	M1	
		10 <i>g</i> 2800(J)	A1	
Or ((b) (b)	$70(50) - "2800" = \frac{1}{2}(10)v^{2} - \frac{1}{2}(10)(2)^{2}$ $700 = 5v^{2} - 20, \ 5v^{2} = 720 \Rightarrow v^{2} = 144$ Hence, $v = \underline{12} \ (m \ s^{-1})$ $N2L(\rightarrow): \ 70 - \frac{4}{7}R = 10a$ $70 - \frac{4}{7} \times 10g = 10a, \ (a = 1.4)$ $AB(\rightarrow): v^{2} = (2)^{2} + 2(1.4)(50)$ Hence, $v = \underline{12} \ (m \ s^{-1})$	M1* A1ft d*M1 A1 cao M1* A1ft d*M1 A1 cao	 (4) (4) (4) (4) [8]
4 ((a) (b)	$v = 10t - 2t^{2}, \ s = \int v dt$ = $5t^{2} - \frac{2t^{3}}{3}(+C)$ $t = 6 \Rightarrow s = 180 - 144 = 36 (m)$ $\underline{s} = \int v dt = \frac{-432t^{-1}}{-1}(+K) = \frac{432}{t}(+K)$ $t = 6, \ s = "36" \Rightarrow 36 = \frac{432}{6} + K$ $\Rightarrow K = -36$ At $t = 10, \ s = \frac{432}{10} - 36 = \underline{7.2}$ (m)	M1 A1 A1 <u>B1</u> M1* A1 d*M1 <u>A1</u>	(3) (5) [8]

Question Number			Scheme		Marks
5 (a)		7	\square	\square	
	MR	108	18 <i>π</i>	$108 + 18\pi$	B1
	$x_i (\rightarrow)$ from <i>AD</i>	4	6	x	B1
	yi (↓) from <i>BD</i>	6	$-\frac{8}{\pi}$	_ y	
	<i>AD</i> (→): 108(4) + 18.	π(6) = (108 ⊦	⊦18 <i>π</i>) <i>x</i>		M1
	$\bar{x} = \frac{432 + 108\pi}{108 + 18\pi} = 4.$	68731 = <u>·</u>	4.69 (cm) (3 sf)	AG	A1 (4)
(b)	$y_i (\downarrow)$ from <i>BD</i>	6	$-\frac{8}{\pi}$	<i>y</i>	B1 oe
	$BD(\downarrow): 108(6) + 18\pi$	$f(-\frac{8}{\pi}) = (108)$	+18π)y		M1 A1ft
	$y = \frac{504}{108 + 18\pi} = 3.0$	6292 = 3.	.06 (cm) (3 sf)		A1
(c)	D 12-	-x	vertical B		(4) M1
	θ = required a	tan	$\theta = \frac{\overline{y}}{12 - 4.68731} = \frac{3.06392}{12 - 4.687}$	 31	dM1 A1
	<i>θ</i> = 22.72641 = <u>23</u>	₫(nearest deg	gree)		A1 (4) [12]

Ques Numb	tion ber	Scheme		Mark	S
6	(a)	Horizontal distance: $57.6 = p \ge 3$ p = 19.2	M1 A1		(2)
	(b)	Use $s = ut + \frac{1}{2}at^2$ for vertical displacement.	M1		
		$-0.9 = q \times 3 - \frac{1}{2}g \times 3^2$	A1		
		$-0.9 = 3q - \frac{9g}{2} = 3q - 44.1$			
		$q = \frac{43.2}{3} = 14.4$ *AG*	A1	CSO	(2)
	(c)	initial speed $\sqrt{p^2 + 14.4^2}$ (with their <i>p</i>)	M1		(3)
		$=\sqrt{576} = 24 \text{ (m s}^{-1})$	A1	сао	(2)
	(d)	$\tan \alpha = \frac{14.4}{p} (= \frac{3}{4}) $ (with their p)	B1		
	(e)	When the ball is 4 m above ground:			(1)
		$3.1 = ut + \frac{1}{2}at^2 \text{ used}$	M1		
		$3.1 = 14.4t - \frac{1}{2}gt^2 \text{ o.e } (4.9t^2 - 14.4t + 3.1 = 0)$	A1		
		$\Rightarrow t = \frac{14.4 \pm \sqrt{(14.4)^2 - 4(4.9)(3.1)}}{2(4.9)}$ seen or implied	M1		
		$t = \frac{14.4 \pm \sqrt{146.6}}{9.8} = 0.023389 \text{ or } 2.70488 \text{ awrt } 0.23 \text{ and } 2.7$	A1		
		duration = $2.70488 0.23389$ = 2.47 or 2.5 (seconds)	M1 A1		(4)
or 6	(e)	M1A1M1 as above			(0)
		$t = \frac{14.4 \pm \sqrt{146.6}}{9.8}$	A1		
		Duration $2 \times \frac{\sqrt{146.6}}{9.8}$ o.e.	M1		
	(F)	= 2.47 or 2.5 (seconds)	A1		(6)
	(1)	Eg. : variable g^{*} , Air resistance, Speed of wind, Swing of ball, The ball is not a particle.	B1		(1)
					[15]

Question Number		Scheme	Marks
7	(a)	Before $2u$ u Correct use of NEL $P(3m)$ $(2m)Q$	M1*
		After \xrightarrow{x} $y - x = e(2u + u)$ o.e.	A1
		CLM (\rightarrow) : $3m(2u) + 2m(-u) = 3m(x) + 2m(y) (\Rightarrow 4u = 3x + 2y)$	B1
		Hence $x = y - 3eu, 4u = 3(y-3eu) + 2y, (u(9e+4) = 5y)$	d*M1
		Hence, speed of $Q = \frac{1}{5}(9e+4)u$ AG	A1 cso
			(5)
	(b)	$x = y - 3eu = \frac{1}{5}(9e + 4)u - 3eu$	M1 [#]
		Hence, speed P = $\frac{1}{5}(4-6e)u = \frac{2u}{5}(2-3e)$ o.e.	A1
		$x = \frac{1}{2}u = \frac{2u}{5}(2 - 3e) \Longrightarrow 5u = 8u - 12eu, \Longrightarrow 12e = 3 \qquad \text{\& solve for } e$	d [#] M1
		gives, $e = \frac{3}{12} \implies e = \frac{1}{4}$ AG	A1
			(4)
Or	(b)	Using NEL correctly with given speeds of P and Q	M1 [#]
		$3eu = \frac{1}{5}(9e+4)u - \frac{1}{2}u$	A1
		$3eu = \frac{9}{5}eu + \frac{4}{5}u - \frac{1}{2}u$, $3e - \frac{9}{5}e = \frac{4}{5} - \frac{1}{2}$ & solve for e	d [#] M1
		$\frac{6}{5} \mathbf{e} = \frac{3}{10} \implies \mathbf{e} = \frac{15}{60} \implies \mathbf{e} = \frac{1}{4}.$	A1
			(4)
	(c)	Time taken by Q from A to the wall $=\frac{d}{\underline{y}} = \left\{\frac{4d}{5u}\right\}$	$M1^{\dagger}$
		Distance moved by <i>P</i> in this time $=\frac{u}{2} \times \frac{d}{y} \left(=\frac{u}{2}\left(\frac{4d}{5u}\right) = \frac{2}{5}d\right)$	A1
		Distance of P from wall = $d - x \left(\frac{\overline{d}}{y}\right); = d - \frac{2}{5}d = \frac{3}{5}d$ AG	d [†] M1; A1 cso
			(4)
or	(c)	Ratio speed P:speed Q = x:y = $\frac{1}{2}u:\frac{1}{5}(\frac{9}{4}+4)u = \frac{1}{2}u:\frac{5}{4}u = 2:5$	$M1^{\dagger}$
		So if Q moves a distance d, P will move a distance $\frac{2}{5}d$	A1
		Distance of P from wall $= d - \frac{2}{5}d$; $= \frac{3}{5}d$ AG cso	d [†] M1; A1
			(4)

Question Number	Scheme	Marks
(d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	Time for P, $T_{AB} = \frac{\frac{3d}{5} - X}{\frac{1}{2}u}$, Time for Q, $T_{WB} = \frac{X}{\frac{1}{4}u}$ from their y	B1ft
	Hence $T_{AB} = T_{WB} \implies \frac{\frac{3d}{5} - X}{\frac{1}{2}u} = \frac{X}{\frac{1}{4}u}$	M1
	gives, $2\left(\frac{3d}{5}-x\right)=4x \Rightarrow \frac{3d}{5}-x=2x, \ 3x=\frac{3d}{5} \Rightarrow x=\frac{1}{5}d$	A1 cao
		(4)
or (d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	speed $P = x = \frac{1}{2}u$, speed P: new speed $Q = \frac{1}{2}u:\frac{1}{4}u = 2:1$ from their y	B1ft
	Distance of <i>B</i> from wall = $\frac{1}{3} \times \frac{3d}{5}$; = $\frac{d}{5}$ their $\frac{1}{2+1}$	M1; A1
		(4)
2 nd or (d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	Combined speed of P and $Q = \frac{1}{2}u + \frac{1}{4}u = \frac{3}{4}u$	
	Time from wall to 2^{nd} collision $=\frac{\frac{3d}{5}}{\frac{3u}{4}} = \frac{3d}{5} \times \frac{4}{3u} = \frac{4d}{5u}$ from their y	B1ft
	Distance of <i>B</i> from wall = (their speed)x(their time) = $\frac{u}{4} \times \frac{4d}{5u}$; = $\frac{1}{5}d$	M1; A1
		(4) [17]

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6678/01)

June 2009 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Mark	S
Q1	I = mv - mu $5i - 3j = \frac{1}{4} v - \frac{1}{4} (3i + 7j)$ v = 23i - 5j $ v = \sqrt{23^2 + 5^2} = 23.5$	M1A1 A1 M1A1	[5]
Q2 (a)	$\frac{dv}{dt} = 8 - 2t$ 8 - 2t = 0 Max v = 8 × 4 - 4 ² = 16 (ms ⁻¹)	M1 M1 M1A1	(4)
(b)	$\int 8t - t^{2} dt = 4t^{2} - \frac{1}{3}t^{3}(+c)$ (t=0, displacement = 0 \Rightarrow c=0) $4T^{2} - \frac{1}{3}T^{3} = 0$ $T^{2}(4 - \frac{T}{3}) = 0 \Rightarrow T = 0,12$ $T = 12 \text{ (seconds)}$	M1A1 DM1 DM1 A1	(5) [9]
Q3 (a) (b)	Constant v \Rightarrow driving force = resistance \Rightarrow F=120 (N) \Rightarrow P=120 x 10 = 1200W Resolving parallel to the slope, zero acceleration: $\frac{P}{v} = 120 + 300g \sin \theta (= 330)$ $\Rightarrow v = \frac{1200}{330} = 3.6 \text{ (ms}^{-1})$	M1 M1 M1A1A1 A1	(2) (4) [6]

PMT

Ques Num	tion ber	Scheme	Mark	S
Q4	(a)	Taking moments about A: $3g \times 0.75 = \frac{T}{\sqrt{2}} \times 0.5$ $T = 3\sqrt{2}g \times \frac{7.5}{5} = \frac{9\sqrt{2}g}{2} (= 62.4N)$	M1A1A1 A1	(4)
	(b)	$\leftarrow \pm H = \frac{T}{\sqrt{2}} \left(= \frac{9g}{2} \approx 44.1N\right)$ $\uparrow \pm V + \frac{T}{\sqrt{2}} = 3g (\Rightarrow V = 3g - \frac{9g}{2} = \frac{-3g}{2} \approx -14.7 \text{ N})$ $\Rightarrow R = \sqrt{81 + 9} \times \frac{g}{2} \approx 46.5(N)$ at angle $\tan^{-1} \frac{1}{2} = 18.4^{\circ} (0.322 \text{ radians})$ below the line of BA	B1 M1A1 M1A1	
		3 161.6° (2.82 radians) below the line of AB (108.4° or 1.89 radians to upward vertical)	WIAT	(7) [11]
Q5	(a)	Ratio of areas triangle:sign:rectangle = 1 : 5 : 6 (1800:9000:10800) Centre of mass of the triangle is 20cm down from AD (seen or implied) $\Rightarrow 6 \times 45 - 1 \times 20 = 5 \times \overline{y}$ $\overline{y} = 50cm$	B1 B1 M1A1 A1	(5)
	(b)	Distance of centre of mass from <i>AB</i> is 60cm Required angle is $\tan^{-1} \frac{60}{50}$ (their values) = 50.2° (0.876 rads)	B1 M1A1ft A1	(3) (4) [9]

Ques ⁻ Num	tion ber	Scheme	Mar	rks
Q6	(a)	$ \rightarrow x = u \cos \alpha t = 10 $ $ \uparrow y = u \sin \alpha t - \frac{1}{2} g t^2 = 2 $ $ \rightarrow t = -\frac{10}{2} g t^2 = 2 $	M1A1 M1A1	
		$2 = u \sin \alpha \times \frac{10}{u \cos \alpha} - \frac{g}{2} \times \frac{100}{u^2 \cos^2 \alpha}$ $= 10 \tan \alpha - \frac{50g}{u^2 \cos^2 \alpha} \text{ (given answer)}$	M1 A1	
	(b)	$u^{2} \cos u^{2}$ $2 = 10 \times 1 - \frac{100g \times 2}{2u^{2} \times 1}$ $u^{2} = \frac{100g}{8}, \ u = \sqrt{\frac{100g}{8}} = 11.1 \ (\text{m s}^{-1})$	M1A1 A1	(6)
		$\frac{1}{2}mu^{2} = m \times 9.8 \times 2 + \frac{1}{2}mv^{2}$ $v = 9.1ms^{-1}$	M1A1 A1	(6)
				[12]

Ques Num	tion ber	Scheme	Mark	S
Q7	(a)	KE at $X = \frac{1}{2}mv^2 = \frac{1}{2} \times 2 \times 14^2$ GPE at $Y =$ $mgd \sin \alpha \left(= 2 \times g \times d \times \frac{7}{25} \right)$ Normal reaction $R = mg \cos \alpha$	B1 B1 B1 M1	
	(b)	Friction = $\mu \times R = \frac{1}{8} \times 2g \times \frac{1}{25}$ Work Energy: $\frac{1}{2}mv^2 - mgd\sin\alpha = \mu \times R \times d$ or equivalent $196 = \frac{14gd}{25} + \frac{6gd}{25} = \frac{20gd}{25}$ d = 25 m Work Energy First time at X: $\frac{1}{2}mv^2 = \frac{1}{2}m14^2$ Work done = $\mu \times R \times 2d = \frac{1}{8} \times 2g \times \frac{24}{25} \times 2d$	M1A1 A1	(7)
		Return to X: $\frac{1}{2}mv^2 = \frac{1}{2}m14^2 - \frac{1}{8} \times 2g \times \frac{24}{25} \times 50$ $v = 8.9 \text{ ms}^{-1}$ (accept 8.85 ms^{-1}) OR: Resolve parallel to XY to find the acceleration and use of $v^2 = u^2 + 2as$ $2a = 2g \sin \alpha - F_{\text{max}} = 2g \times \frac{7}{25} - \frac{6g}{25} = \frac{8g}{25}$ $v^2 = (0+)2 \times a \times s = 8g ; v = 8.9$ (accept 8.85 ms^{-1})	M1A1 DM1A1 M1A1 DM1;A1	(4)

Quest Numb	tion ber		Scheme	Mar	ks
Q8	(a)				
		A $(4m)$	B_{3m} C_{m}		
			$v \longleftarrow kv$		
		Conservation of momentum:	4mu - 3mv = 3mkv	M1A1	
		Impact law:	$kv = \frac{3}{4}(u+v)$	M1A1	
		Eliminate k:	$4mu - 3mv = 3m \times \frac{3}{4}(u+v)$	DM1	
			u = 3v (Answer given)	A1	
	(b)	3			(6)
		$kv = \frac{3}{4}(3v + v), k = 3$		M1,A1	(2)
	(c)	Impact law: $(kv + 2v)e = v_C - v_B$	$_{3} (5ve = v_{C} - v_{B})$	B1	
		Conservation of momentum : 3×	$kv - 1 \times 2v = 3v_B + v_c (7v = 3v_B + v_c)$	B1	
		Eliminate $v_{\rm C} : v_{\rm B} = \frac{v}{4}(7-5e) > 0$) hence no further collision with A.	M1 A1	(4)
					[12]

Mark Scheme (Results) January 2010

GCE

Mechanics M2 (6678)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010 Publications Code UA022965 All the material in this publication is copyright © Edexcel Ltd 2010

January 2010 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks
Q1.	$\frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 4$ $6t - 4 = 0 \Longrightarrow t = \frac{2}{3}$	M1 A1 M1 A1
	$s = \int 3t^2 - 4t + 3 \mathrm{d}t = t^3 - 2t^2 + 3t (+c)$	M1 A1
	$t = \frac{2}{3} \Longrightarrow s = -\frac{16}{27} + 2$ so distance is $\frac{38}{27}$ m	M1 A1
Q2.	$\begin{array}{cccc} 2u & u \\ \hline 2m & m \\ \hline v_1 & v_2 \end{array}$	[8]
	CLM: $4mu - mu = 2mv_1 + mv_2$	M1 A1
	i.e. $3u = 2v_1 + v_2$	
	NIL: $3eu = -v_1 + v_2$	M1 A1
	$v_1 = u(1-e)$	DM1 A1
	$v_2 = u(1+2e)$	A1
		[7]
Q3.	$\frac{1}{2} \ge 0.5 \ge 20^2$; $0.5g \ge 10$	B1 B1
	$10R = \frac{1}{2} \ge 0.5 \ge 20^2 - 0.5g \ge 10$	M1 A1
	$\Rightarrow R = 5.1$	DM1 A1
		[6]

PMT

Question Number	Scheme	Marks	
Q4.	(i) $I\uparrow = 0.25 \times 40 \sin 60 = 5\sqrt{3}$ (8.66) one component $I \leftarrow = 0.25(-20+30) = 2.5$ both $ I = \sqrt{75+6.25} = 9.01$ (Ns)	M1 A1	
		M1 A1	(4)
	(ii) $\frac{\sin\theta}{40} = \frac{\sin60^{\circ}}{\sqrt{1300}}$		
	$\theta = 106^\circ$ (3 s.f.)	M1 A1	
	or $\tan \theta = \pm \frac{5\sqrt{3}}{2.5}$ oee $\theta = 106^{\circ}$	M1 A1	(4)
			[8]
	Alternative to $4(i)$ Use of $\mathbf{I} = m(\mathbf{v} - \mathbf{u})$	M1	
	$30^2 + 40^2 - 2 \times 30 \times 40\cos 60^\circ$ (= 1300)	M1 A1	
	$I = 0.25\sqrt{1300} = 9.01$ N s (3 s.f.)	A1	
	2nd Alternative to 4(i) $\mathbf{u} = 30\mathbf{i}$, $\mathbf{v} = 40\cos 60\mathbf{i} + 40\sin 60\mathbf{j} = 20\mathbf{i} + 20\sqrt{3}\mathbf{j}$		
	$I = \frac{1}{4}(-10i + 20\sqrt{3}j) = -2.5i + 5\sqrt{3}j$	M1	
		A1 etc	

Question Number	Scheme	Marks	
Q5.	(a) $\frac{490}{3.5} - R = 0$	B1 M1 A1	
	R = 140 N	A1 (4	4)
	(b) $\frac{24}{u} + 70g.\frac{1}{14} - 40u = 0$	B1	
	$40u^2 - 49u - 24 = 0$	M1 A2,1,0	
	(5u - 8)(8u + 3) = 0	DM1	
	<i>u</i> = 1.6	DM1 A1 (7	')
		[11	1]
Q6.	$m(B): R \times 4\cos\alpha = F \times 4\sin\alpha + 20g \times 2\cos\alpha$	M1 A2	
	Use of $F = \frac{1}{2}R$	M1	
	Use of correct trig ratios	B1	
	R = 160N or 157N	DM1 A1	
		[7	7]

Question Number		Scheme		Mark	S
Q7.	(a) Rectangle	Semicircles	Template, T		
	24 <i>x</i>	4.5π 4.5π	$24x + 9\pi$	B2	
	x	$\frac{4 \times 3}{3\pi} \qquad \frac{4 \times 3}{3\pi}$	$\frac{1}{x}$	B2	
	$24x^2 - 4$	$4.5\pi \times \left(\frac{4 \times 3}{3\pi}\right) - 4.5\pi \times \left(\frac{4}{3\pi}\right)$	$\left(\frac{x}{3\pi}\right) = (24x + 9\pi)\overline{x}$	M1 A1	
		distance $= \bar{x} = \frac{4 2x^2 - 3 }{(8x + 3\pi)^2}$; **)	A1	(7)
	(b) W	When $x = 2$, $ \bar{x} = \frac{20}{16 + 3\pi}$		B1	
		$\tan \theta = \frac{6}{4 - \left \bar{x}\right } = \frac{6}{4 - \frac{20}{16 + 3\pi}}$	- - T	M1 A1	
		$=rac{48+9\pi}{22+6\pi}$.		A1	(4)
					[11]

Question Number	Scheme	Marks	8
Q8.	(a) $x = ut$	B1	
	$y = cut - 4.9t^2$	M1 A1	
	eliminating <i>t</i> and simplifying to give $y = cx - \frac{4.9x^2}{u^2} **$	DM1 A1	(5)
	(b)(i) $0 = cx - \frac{4.9x^2}{u^2}$	M1	
	$0 = x(c - \frac{4.9x}{u^2}) \Longrightarrow R = \frac{u^2 c}{4.9} = 10c$	M1 A1	
	(ii) When $x = 5c$, $y = H$	M1	
	$=5c^2 - \frac{(5c)^2}{10} = 2.5c^2$	M1 A1	(6)
	(c) $\frac{dy}{dx} = c - \frac{9.8x}{u^2} = c - \frac{x}{5}$	M1 A1	
	When $x = 0$, $\frac{dy}{dx} = c$	B1	
	So, $c - \frac{x}{5} = \frac{-1}{c}$	DM1 A1	
	$x = 5(c + \frac{1}{c})$	A1	(6)
			[17]
	Alternative to 8(c) u u $\tan \theta = \frac{u}{cu} = \frac{1}{c} = \frac{v}{u}$	B1	
	θ \forall v \Rightarrow $v = \frac{u}{c} = \frac{7}{c}$	M1 A1	
	uc $v = u + at$; $-\frac{7}{c} = 7c - 9.8t$	M1	
	$t = \frac{7}{9.8}(c + \frac{1}{c})$	A1	
	$x = ut = 7t$; $x = 5(c + \frac{1}{c})$	A1	

PhysicsAndMathsTutor.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA022965 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) Summer 2010

GCE

GCE Mechanics M2 (6678/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024472 All the material in this publication is copyright © Edexcel Ltd 2010

Summer 2010 Mechanics M2 6678 Mark Scheme

Question Number	Scheme	Marks
Q1	$\frac{dv}{dt} = 3t + 5$ $v = \int (3t + 5) dt$ $v = \frac{3}{2}t^2 + 5t (+c)$ $t = 0 v = 2 \implies c = 2$ $v = \frac{3}{2}t^2 + 5t + 2$ $t = T \qquad 6 = \frac{3}{2}T^2 + 5T + 2$ $12 = 3T^2 + 10T + 4$ $3T^2 + 10T - 8 = 0$ $(3T - 2)(T + 4) = 0$ $T = \frac{2}{3} (T = -4)$ $\therefore T = \frac{2}{3} (\text{or } 0.67)$	M1* A1 B1 DM1* M1 A1

0			
Question	Scheme	Marks	
Number			
Q2	0 m s^{-1}		
	4 m s^{-1}		
	<i>R F</i> 12 m		
	↓ 0.6g		
(a)	K.E gained = $\frac{1}{2} \times 0.6 \times 4^2$		
	P.E. lost = $0.6 \times g \times (12 \sin 30)$		
	Change in energy = $P.E.$ lost - $K.E.$ gained		
	$= 0.6 \times g \times 12 \sin 30 - \frac{1}{-} \times 0.6 \times 4^2$	M1 A1 A1	
	= 30.48		
	Work done against friction = 30 or 30.5 J	A1	(4)
(b)	$\mathbf{R}\left(\uparrow\right) R = 0.6g\cos 30$	B1	
	$F = \frac{30.48}{12}$	B1ft	
	$F = \mu R$		
	$\mu = \frac{30.48}{12 \times 0.6g \cos 30}$	M1	
	$\mu = 0.4987$		
	$\mu = 0.499$ or 0.50	A1	(4) [8]

PhysicsAndMathsTutor.com

Question	Scheme	Marks	
Q5 (a)	I = mv - mu = 0.5 × 20i - 0.5(10i + 24j) = 5i - 12j 5i - 12j = 13 Ns	M1 A1 M1 A1	(4)
(b)	$\tan \theta = \frac{12}{5}$ $\theta = 67.38$ $\theta = 67.4^{\circ}$	M1 A1	(2)
(c)	K.E.lost = $\frac{1}{2} \times 0.5 (10^2 + 24^2) - \frac{1}{2} \times 0.5 \times 20^2$	M1 A1	
	= 69 J	A1	(3) [9]

Question Number	Scheme	Marks	
Q6	D $2a$ F A R $2a$ a a mg mg mg		
(a)	M(A) $3a \times T \cos \theta = 2amg + 4amg$ $\cos \theta = \left(\frac{2}{\sqrt{9+4}}\right) = \frac{2}{\sqrt{13}}$ $\frac{6}{\sqrt{13}}T = 6mg$ $T = mg\sqrt{13} *$	M1 A1 A1 B1 A1	(5)
(b)	$3a \times T \times \cos \theta = 2amg + 4aMg$ $T = \frac{(2mg + 4Mg)}{\epsilon} \sqrt{13} \le 2mg\sqrt{13}$	M1 A1	
	$mg + 2Mg < 6mg$ $M \le \frac{5}{2}m * $ cso	A1	(3) [8]
edexcel

Question Number	Scheme	Mark	S
Q7 (a)	Vertical motion: $v^2 = u^2 + 2as$ $(40 \sin \theta)^2 = 2 \times g \times 12$ $(\sin \theta)^2 = \frac{2 \times g \times 12}{40^2}$ $\theta = 22.54 = 22.5^\circ \text{ (accept 23)}$	M1 A1 A1	(3)
(b)	Vert motion $P \rightarrow R$: $s = ut + \frac{1}{2}at^2$ $-36 = 40 \sin \theta t - \frac{g}{2}t^2$ $\frac{g}{2}t^2 - 40 \sin \theta t - 36 = 0$ $t = \frac{40 \sin 22.54 \pm \sqrt{(40 \sin 22.54)^2 + 4 \times 4.9 \times 36}}{9.8}$ t = 4.694 Horizontal P to R: $s = 40 \cos \theta t$ = 173 m (or 170 m)	M1 A1 A1 A1 M1 A1	(6)
(c)	Using Energy: $\frac{1}{2}mv^{2} - \frac{1}{2}m \times 40^{2} = m \times g \times 36$ $v^{2} = 2(9.8 \times 36 + \frac{1}{2} \times 40^{2})$ $v = 48.0$ $v = 48 \text{ m s}^{-1} \text{ (accept 48.0)}$	M1 A1 A1	(3) [12]

edexcel

Question Number	Scheme	Marks	
Q8 (a) (i)	$w \qquad u \qquad $	M1# A1 M1# A1 DM1#	
(ii)	$v = \frac{1}{4}u$ In (2) $u = w - \frac{1}{4}u$ $w = \frac{5}{4}u$	A1 A1	(7)
(b)	<i>B</i> to wall: N.L.R: $\frac{5}{4}u \times \frac{2}{5} = V$ $V = \frac{1}{2}u$	M1 A1ft	(2)
(c)	$ \overrightarrow{A} \bigcirc \qquad \overrightarrow{\frac{1}{4}u} \qquad \overrightarrow{\frac{1}{2}u} B $ <i>B</i> to wall: time = $4a \div \overleftarrow{-}u = \frac{16a}{4}$	B1ft	
	Dist. Travelled by $A = \frac{1}{4}u \times \frac{16a}{5u} = \frac{4}{5}a$ In t secs, A travels $\frac{1}{4}ut$, B travels $\frac{1}{2}ut$ Collide when speed of approach $= \frac{1}{2}ut + \frac{1}{4}ut$ distance to cover =	B1ft	
	$\therefore t = \frac{4a - \frac{4}{5}a}{\frac{3}{4}u} = \frac{16a}{5} \times \frac{4}{3u} = \frac{64a}{15u}$ Total time $= \frac{16a}{5u} + \frac{64a}{15u} = \frac{112a}{15u} *$	M1\$ DM1\$ A1 A1	(6)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024472 Summer 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) January 2011

GCE

GCE Mechanics M2 (6678) Paper 1

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011 Publications Code UA026580 All the material in this publication is copyright

© Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Mechanics M2 6678 Mark Scheme

Question Number	Scheme	Marks	
1. (a)	Constant speed \Rightarrow Driving force = resistance, $F = 32$. $P = F \times v = 32v = 384$ $v = 12 \text{ (ms}^{-1} \text{)}$	B1 M1 A1	(3)
(b)	$P = F \times v \Longrightarrow 384 = F \times 9, F = \frac{384}{9}$ Their $F - 32 = 120a$, $a = 0.089 (\text{ms}^{-2})$	M1 M1 A1	(3)
2.	I = (-6i + 8j) = 2(v - (5i + j)) -3i + 4j = v - 5i - j v = 2i + 5j KE = $\frac{1}{2} \times 2 \times v ^2 = (\sqrt{2^2 + 5^2})^2 = 29$ (J)	M1A1 A1 M1 A1	[5]
3. (a)	$a = 4t^{3} - 12t$ Convincing attempt to integrate $v = t^{4} - 6t^{2} (+c)$ Use initial condition to get $v = t^{4} - 6t^{2} + 8 (ms^{-1}).$	M1 A1 A1	(3)
(b)	Convincing attempt to integrate $s = \frac{t^5}{5} - 2t^3 + 8t(+0)$ Integral of their v	M1 A1ft	(2)
(c)	Set their $v = 0$ Solve a quadratic in t^2 $(t^2 - 2)(t^2 - 4) = 0 \Rightarrow$ at rest when $t = \sqrt{2}, t = 2$	M1 DM1 A1	(3) [8]

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks
4. (a)	Work done against friction = $50 \times \mu R$ = $50 \times \frac{1}{4} \times 30 \cos 20^{\circ} \times 9.8$	M1 A1 M1 A1
	Total work done = WD against Friction + gain in GPE = $8480(J)$, $8500(J)$	DM1 A1 (6)
(b)	Loss in GPE = WD against friction + gain in KE 3 terms	M1
	$30 \times 9.8 \times 50 \sin 20^\circ = 50 \times \frac{1}{4} \times 30 \times 9.8 \times \cos 20^\circ + \frac{1}{2} \times 30 \times v^2$ -1 ee	A2,1,0
	$\frac{1}{2} v^2 = 50 \times 9.8 \times (\sin 20^\circ - \frac{1}{4} \cos 20^\circ),$	DM1
	$v = 10.2 \text{ m s}^{-1}$.	A1 (5)
		[11]

6. (a)	Using $s = ut + \frac{1}{2}at^2$ Method must be	M1	
	clear $\mathbf{r} = (3t)\mathbf{i} + (10 + 5t - 4.9t^2)\mathbf{j}$ Answer given	A1 A1	(3)
(b)	j component = 0: $10 + 5t - 4.9t^2$ quadratic formula: $t = \frac{5 \pm \sqrt{25 + 196}}{9.8} = \frac{5 \pm \sqrt{221}}{9.8}$ T = 2.03(s), 2.0(s) positive solution only.	M1 DM1 A1	(3)
(c)	Differentiating the position vector (or working from first principles) $\mathbf{v} = 3\mathbf{i} + (5 - 9.8t)\mathbf{j} \text{ (ms}^{-1})$	M1 A1	(2)
(d)	At <i>B</i> the j component of the velocity is the negative of the i component: 5 -9.8t = -3, $8 = 9.8t$, t = 0.82	M1 A1	(2)
(e)	$\mathbf{v} = 3\mathbf{i} - 3\mathbf{j}$, speed = $\sqrt{3^2 + 3^2} = \sqrt{18} = 4.24 (\text{m s}^{-1})$	M1A1	(2) [12]

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks
8. (a)	KE lost : $\frac{1}{2} \times m \times 36 - \frac{1}{2} \times m \times v^2 = 64$ Restitution: $v = 1/3 \ge 6 = 2$ Substitute and solve for m: $\frac{1}{2} \times m \times 36 - \frac{1}{2} \times m \times 4 = 64 - 16m$	M1A1 M1A1 DM1
	$m = 4 \qquad \text{answer given}$	A1 (6)
(b)	$ \begin{array}{c} 3 \text{ m/s} \\ \hline 2 \text{ kg} \\ \hline \nu \\ \end{array} $ $ \begin{array}{c} 2 \text{ m/s} \\ \hline 4 \text{ kg} \\ \hline w \\ \end{array} $	
	Conservation of momentum: $6-8 = 4w-2v$ their "2" Restitution: $v+w = \frac{1}{3}(2+3)$ their "2" $v = \frac{5}{3} - w$ Solve for $w: -2 = 4w - 2(\frac{5}{3} - w) = 6w - \frac{10}{3}$ $\frac{4}{3} = 6w$ $(w = 4/18 = 2/9 \text{ m s}^{-1})$	M1A1ft M1A1ft DM1 A1
	$w > 0 \Rightarrow$ will collide with the wall again	A1 (7) [13]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA026580 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Mechanics M2 (6678) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA028440 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

PMT

June 2011 6678 Mechanics M2 Mark Scheme

GCE Mechanics M2 (6678) June 2011

edexcel advancing learning, changing lives

Question Number	Scheme	Marks	0.0
3. (a)	$\mathbf{I} = m\mathbf{v} - m\mathbf{u}$ $-4\mathbf{i} + 7\mathbf{i} = 0.5(\mathbf{v} - 12\mathbf{i})$	M1	
	$4\mathbf{i} + 14\mathbf{j} = \mathbf{v}$	A1	
	Speed = $\sqrt{16 + 196} = \sqrt{212} \text{ m s}^{-1}$ (14.6 or better)	M1 A1	(4)
(b)			
	$\tan \theta = \frac{7}{2}$	M1	
	$\frac{\partial \theta}{\partial t} = 74.0$ $\theta = 74^{\circ}$	A1ft	(2)
(c)	Gain in K.E. = $\frac{1}{2} \times 0.5 (212 - 12^2)$, =17 J	M1 A1	
			(2) 8

Question Scheme Marks Number 4. **(a)** В A а a Ca G a a Ε D ABDE BCD Lamina $8a^2\rho$ $a^2\rho$ $9a^2\rho$ Mass ratio **B**1 1 9 8 Dist of C of M From AE $4\frac{1}{3}a$ 2a \overline{x} B1 $8 \times 2a + 1 \times \frac{13}{3}a = 9\overline{x}$ **M**1 $\overline{x} = \frac{61}{27}a \quad (2.26a)$ A1 (4) **(b)** $\tan \phi = \frac{a}{\frac{61}{27}a} = \frac{27}{61}$ M1 A1 ft $\phi = 23.87... = 24^{\circ}$ (accept 23.9), 0.417 radians A1 (3) 7 PMT

edexcel

Question Number	Scheme	Marks	
6.			
(a)	$\longrightarrow (t-4)$		
	P m		
	$\frac{\mathrm{d}v}{\mathrm{d}t} = t - 4$		
	$dt = \frac{1}{2}t^2 - 4t(+c)$	M1 A1	
	$\begin{array}{c} 2 \\ t = 0 v = 6 \Rightarrow c = 6 \end{array}$	M1	
	$\therefore v = \frac{1}{2}t^2 - 4t + 6$	A1	
	2	(4	4)
(b)	$v = 0$ $0 = t^2 - 8t + 12$	M1	
	(t-6)(t-2) = 0	DM1	
	t = 6 t = 2	A1	
	.3	(.	3)
(c)	$x = \frac{t}{6} - 2t^2 + 6t + k$	M1 A1 ft	
	$x_6 - x_2 = \frac{6^3}{6} - 2 \times 6^2 + 6^2 + k$	DM1	
	$-\left(\frac{2^3}{6} - 2 \times 2^2 + 6 \times 2 + k\right)$		
	$=-5\frac{1}{3}$		
	\therefore Distance is $5\frac{1}{3}$ m	A1	
		(4	4)
			11

edexcel

GCE Mechanics M2 (6678) June 2011

edexcel advancing learning, changing lives

Question	Scheme	Marks
Number		
8. (a)		
	$\langle x \rangle$	
	Horiz: $x = u \cos \alpha t$	B1
	Vert: $y = u \sin \alpha t - \frac{1}{2}gt^2$	M1
	$y = u \sin \alpha \times \frac{x}{u \cos \alpha} - \frac{1}{2}g \times \frac{x^2}{u^2 \cos^2 \alpha}$	DM1
	$y = x \tan \alpha - \frac{g x^2}{2u^2 \cos^2 \alpha} **$	A1 (4)
(b)	$y = -7: -7 = \tan 45x - \frac{gx^2}{2 \times 7^2 \cos^2 45}$	M1 A1
	$-7 = x - \frac{9.8x^2}{7^2}$	
	$-7 = x - \frac{x^2}{5}$	M1
	$x^{2} - 5x - 35 = 0$ 5 \pm \sqrt{25 + 4 \times 35}	
	$x = \frac{2}{2}$	MI
	x = 8.92 or 8.9	AI (5)
(c)	Time to travel 8.922 m horizontally $=\frac{8.922}{7\cos 45}$ = 1.802s	M 1
	$v = \frac{8.922}{1.402}$	M1 A1 ft
	$= 6.36 \text{ or } 6.4 \text{ (m s}^{-1}\text{)}$	A1
		(4) 13

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA028440 June 2011

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Mark Scheme (Results)

January 2012

GCE Mechanics M2 (6678) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012 Publications Code UA030773 All the material in this publication is copyright © Pearson Education Ltd 2012

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ... $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. <u>Formula</u>

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c, q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

January 2012 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks	
1	Use of $m(v - u) = I$ $0.1 \ge (v - 30i) = -2i - 4j$ Solve for $v : 0.1v = 3i - 2i - 4j = i - 4j$ v = 10i - 40j	M1 A1 DM1 A1	4
2 (a)	Speed = $\sqrt{8^2 + 48^2} = \sqrt{2368} = 48.7 (\text{ms}^{-1})$	M1 A1	
(b)	a = 2 i - 6 <i>t</i> j When $t = 4$, a = 2 i - 24 j (ms ⁻²)	M1 A1 A1	(2)
(c)	$\mathbf{r} = t^{2}\mathbf{i} - t^{3}\mathbf{j} + \mathbf{C}$ $\mathbf{t} = 1, -4\mathbf{i} + \mathbf{j} = \mathbf{i} - \mathbf{j} + \mathbf{C}, \mathbf{C} = -5\mathbf{i} + 2\mathbf{j}$ $\mathbf{r} = (t^{2} - 5)\mathbf{i} + (-t^{3} + 2)\mathbf{j}$	M1 A1 DM1	(3)
	When $t = 4$, $\mathbf{r} = (16-5)\mathbf{i} + (-64+2)\mathbf{j} = 11\mathbf{i} - 62\mathbf{j}$	DM1 A1	(5) 10

Question Number	Scheme	Marks	
4 (a)	For an appropriate division of the trapezium into standard shapes with: correct ratio of masses correct distances of c.o.m. from AB e.g three equilateral triangles of height $\sqrt{3}$, mass <i>m</i> kg, com $\frac{\sqrt{3}}{2}$ from bases of each	B1 B1	
	$3md = \left(m \times \frac{2}{3} \times \sqrt{3}\right) + \left(2 \times m \times \frac{1}{3} \sqrt{3}\right) = \frac{4\sqrt{3}}{3}m,$	M1 A1	
	$d = \frac{4\sqrt{3}}{9} \qquad \text{AG}$	A1	
(b)	Horizontal distance of c of m from $D = 1m$	B1	(5)
	Vertical distance $\sqrt{3} - \frac{4\sqrt{3}}{9} = \frac{5\sqrt{3}}{9} (0.962)$	B1	
	$\tan^{-1} \frac{0.962}{1}$	M1 A1ft	
	Angle = 43.9°	A1	(5) 10
5			
(a)	Taking moments about A: $4g \times 0.7 \times \cos 20^\circ = 1.4T$ T = 18.4 N	MI A1 A1 A1	(4)
(b)	$\uparrow R + T\cos 20 = 4g$ $R = 4g - T\cos 20^{\circ}$ $\rightarrow F = T\sin 20$ $F = \mu R \Rightarrow T\sin 20^{\circ} = \mu (4g - T\cos 20^{\circ})$ $\mu = \frac{T\sin 20^{\circ}}{4g - T\cos 20^{\circ}} = 0.29$	M1 A1 M1 A1 DM1 A1 A1	
			(7) 11

Question Number	Scheme	Marks	
6 (a)			
	$\begin{array}{c} A \\ u \\ u' \\ w' \\ w' \\ w' \\ w \\ w \\ w \\ w \\ w \\ w$		
	Momentum: $u = u' + v$ NEL: $v - u' = eu$ $2v - u(1 + \frac{2}{3}), v - \frac{1}{3}u \times \frac{5}{3} - \frac{5u}{3}$	M1 A1 M1 A1 DM1 A1	
	$2v = u(1 + \frac{\pi}{3}), \ v = \frac{\pi}{2}u \times \frac{\pi}{3} = \frac{\pi}{6}$ $u' = u - v = \frac{u}{6}$	A1	
(b)	KE lost = $\frac{1}{2}mu^2 - \left(\frac{1}{2}m \times \frac{25}{26}u^2 + \frac{1}{2}m \times \frac{1}{26}u^2\right)$ their speeds	M1	(7)
	$= \frac{1}{2}mu^{2} - \left(\frac{1}{2}m \times \frac{26}{36}u^{2}\right)$	A2 – 1ee	
	$= \frac{1}{2}mu^2 \times \frac{10}{35} = \frac{5}{36}mu^2 \qquad AG$	A1	
(c)	Speed of C = $\frac{1}{2} \left(\frac{1}{2} u \left(\frac{5}{3} \right) \right) \left(\frac{5}{3} \right) = \frac{1}{2} \cdot \frac{5u}{6} \cdot \frac{5}{3}, = \frac{25}{36} u$	M1 A1 DM1 A1	(4)
			(4) 15

Question Number	Scheme	Marks	
7 (a)	$\mathbf{i} \rightarrow \text{distance} = 6t$	B1	
	$\mathbf{j} \uparrow \text{ distance} = 12t - \frac{1}{2}gt^2$	M1 A1	
	At <i>B</i> , $2\left(12t - \frac{1}{2}gt^2\right) = 6t$	M1 A1	
	$(24-6)t = gt^2$	DM1	
	$18 = gt$, $t = \frac{18}{g} (= 1.84 s)$	A1	
(b)	\mathbf{i} → speed = 6 \mathbf{j} ↑ velocity = $12 - gt = -6$ \mathbf{i} speed at A	B1 M1 A1	(7)
	$= \sqrt{6^2 + 6^2} = \sqrt{72} = 6\sqrt{2} (= 8.49) (ms^{-1})$	M1 A1	
(c)	\uparrow speed = $12 - gt = +6$	M1 A1 ft	(5)
	$t = \frac{6}{9} (= 0.61 \text{s})$	A1	
	0		(3) 15
Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA030773 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

Mark Scheme (Results)

Summer 2012

GCE Mechanics M2 (6678) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012 Publications Code UA032678 All the material in this publication is copyright © Pearson Education Ltd 2012

Summer 2012 6678 Mechanics 2 Mark Scheme

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- •There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- •Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- •When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the first 2 A or B marks affected are lost, and the subsequent A marks affected are treated as A ft; but manifestly absurd answers should never be awarded A marks.

General Principles for Mechanics Marking

Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.

Omission or extra g in a resolution is accuracy error not method error.

Omission of mass from a resolution is method error.

Omission of a length from a moments equation is a method error.

Omission of units or incorrect units is not (usually) counted as an accuracy error. DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.

Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF. Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *ONCE* per complete question.

However, premature approximation should be penalised every time it occurs. MARKS MUST BE ENTERED IN THE SAME ORDER AS THEY APPEAR ON THE MARK SCHEME.

In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.

Accept column vectors in all cases.

PhysicsAndMathsTutor.com

Summer 2012 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks	Notes	
1				
(a)	dw	M1	Differentiate v to obtain a.	
	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = 6t\mathbf{i} + (4-2t)\mathbf{j}$	A1	Accept column vector or i and j components dealt with separately.	
	When $t = 1$, $\mathbf{a} = 6\mathbf{i} + 2\mathbf{j}$	DM1	Substitute $t = 1$ into their a . Dependent on 1^{st} M1	
	$ \mathbf{a} = \sqrt{6^2 + 2^2} = \sqrt{40} = 6.32 \text{ (m s}^{-2}\text{)}$	DM1	Use of Pythagoras to find the magnitude of their a . Allow with their t. Dependent on $1^{st} M1$	
		A1	Accept awrt 6.32, 6.3 or exact equivalents.	
		(5)		
(b)	$\mathbf{r} = \int (3t^2 - 1)\mathbf{i} + (4t - t^2)\mathbf{j} \mathrm{d}t$	M1	Integrate \mathbf{v} to obtain \mathbf{r}	
	$= (t^{3} - t + C)\mathbf{i} + (2t^{2} - \frac{1}{3}t^{3} + D)\mathbf{j}$	A1	Condone C, D missing	
	$t = 0, \mathbf{r} = \mathbf{i} \Longrightarrow C = 1, D = 0$	DM1	Use $t = 0$, $\mathbf{r} = \mathbf{i}$ to find $C \& D$	
	When $t = 3$, r = 25 i + 9 j (m)	DM1	Substitute $t = 3$ with their <i>C</i> & <i>D</i> to find r . Dependent on both previous Ms.	
		A1	cao. Must be a vector.	
		(5)		
		10		

PMT

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
2			
(9)	3m 2u - 4mu = 3mv + 4mv	M1	CLM. Need all terms. Condone sign slips.
(a)	$3m_2u$ $mu = 3mv_1 + mv_2$	A1	Correct but check their directions for $v_1 \& v_2$.
	$a(2u \pm u) = -v \pm v$	M1	Impact law. Must be used the right way round, but condone sign slips.
	$e(2u+u) = -v_1 + v_2$	A1	Directions of $v_1 \& v_2$ must be consistent between the two equations. (Ignore the diagram if necessary)
	$\frac{u(2+9e)}{v_2} = v_2$	DM1	Eliminate v_1 to produce an equation in v_2 only. Dependent on both previous M marks – must be using both equations.
	7 2	A1	DO NOT accept the negative. The question asks for speed.
		(6)	
		M1	Use the work from (a) or restart to find v_1 or λv_1 for a constant λ .
(b)	$v_1 = \frac{2u(1-6e)}{7}$		If using work from (a) this mark is dependent on the first 2 M marks.
		A1	a.e.f. Correct for their direction. Allow for λv_1
		DM1	An appropriate inequality for their v_1 (seen or implied) – requires previous M1 scored.
	$v_1 < 0 \Longrightarrow e > \frac{1}{-}$		Work on $v_1=0$ scores M0 until the inequality is formed.
	¹ 6 A	A1	Accept $\frac{2}{12}$. Answer must follow from correct work for v_1
	$1 \ge e > \frac{1}{6}$	B1	For (their value) $< e \le 1$
	-		SR: from $v_1 \le 0$ could score M1A0B1
		(5)11	

Question Number	Scheme	Marks	Notes
3 (a) (b)	$M(A), F.4 \sin 40^{\circ} = 5g.2 \cos 25^{\circ}$ F = 35 $F \cos 75^{\circ} \pm Y = 5g$ Y = 40; UP	M1 A1 A1 A1 (4) M1 A1 A1 A1 A1 (4) 8	A complete method to find F , e.g. take moments about A . Condone sin/cos confusion. Requires correct ratio of lengths. Correct terms with at most one slip All correct 35 or 34.5 (>3sf not acceptable due to use of 9.8, but only penalise once in a question) Resolve vertically. Need all three terms but condone sign errors. Must be attempting to work with their 75° or 15° . Correct equation (their F) 40 or 40.1 Apply ISW if the candidate goes on to find R . cso (the Q does specifically ask for the direction, so this must be clearly stated)
(b)	OR1: $\frac{4m\cos 25 \times Y}{= 5g \times 2m\cos 25 + F\cos 15 \times 4m\sin 25}$ etc.	M1 A1	Taking moments about the point vertically below B and on the same horizontal level as A .(Their F)
	OR2: $R \cos \alpha = F \cos 40 + 5g \cos 65$ $R \sin \alpha + F \sin 40 = 5g \cos 25$		Resolve parallel & perpendicular to the rod
	$R=52.1, \alpha=25.3^{\circ}$		Solve for K , α
	$Y = R\sin(25 + \alpha)$ Etc.	M1A1	Need a complete strategy to find <i>Y</i> for M1.

PMT

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
4 (a)	$\pi(4a)^{2} \qquad \pi(2a)^{2} \qquad (\pi(4a)^{2} - \pi(2a)^{2})$ $4 \qquad 1 \qquad 3$ $4a \qquad 2a \qquad \overline{r}$	B1 B1	Correct mass ratios Distance of c of m from <i>P</i> (or from a point on <i>QP</i>).
	$(4 \times 4a) - (1 \times 2a) = 3 \overline{x}$ $\frac{14a}{3} = \overline{x} *$	M1 A1	Moments about axis through P , or about a parallel axis then convert the answer to distance from P . Condone a sign slip. Answer given – check working carefully. Must reach positive answer legitimately.
(b)	$OG = 4a \tan \alpha = \frac{10a}{3} \left(\Rightarrow PG = \frac{2a}{3} \right)$	(4) M1 A1	Vertical through <i>S</i> cuts <i>OP</i> at <i>G</i> . Use trig to find the position of <i>G</i> on <i>OP</i> . $OG = \frac{10a}{3}, QG = \frac{22a}{3}$ or $PG = \frac{2a}{3}$ seen or implied
	$M(P), (m+km)g.\frac{2a}{3}\cos\alpha = mg.\frac{14a}{3}\cos\alpha$ $M(G): km \times \frac{2}{3}a = m \times \left(\frac{10}{3}a + \frac{2}{3}a\right) = 4ma$	M1	Take moments about a point on QP – terms should be dimensionally consistent. Masses must be associated with the appropriate distances, which might be incorrectly evaluated or not yet found – e.g. accept with QG. Must have the right terms but condone trig confusion. Also condone absence of trig.
	$M(O): m(1+k) \times \frac{10}{3}a + m \times \frac{2}{3}a = km \times 4a$ $M(C): \frac{12}{3}a \times (1+k)m = \frac{14}{3}a \times km$ $M(Q): \frac{22}{3}a \times m(1+k) = \frac{10}{3}a \times m + 8a \times km$	A1	cso (C is the position of the original centre of mass.)
	k = 6	A1 (5) 9	cso See next page for more alternatives

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
5			NB In a Q with parts labelled (i) & (ii) marks are awarded when seen – they do not belong to a particular part of the Q.
	$12.5\sin\alpha = \frac{1}{4}(v_130)$	M1	Impulse = change in momentum parallel to the initial direction.
	or $-12.5\sin\alpha = \frac{1}{4}(v_1 - 30)$ $(v_1 = 0)$	A1	Correct equation
	$12.5\cos\alpha = \frac{1}{4}(v_2 - 0) \qquad (v_2 = 40)$	M1	Impulse = change in momentum perpendicular to the initial direction. Condone sin/cos confusion
		A1	Correct equation
			NB could be in the form: $\begin{pmatrix} -12.5 \sin \alpha \\ 12.5 \cos \alpha \end{pmatrix} = 0.25v - 0.25 \begin{pmatrix} 30 \\ 0 \end{pmatrix}$
	speed is 40 m s ⁻¹ ; perpendicular to original direction Using a vector triangle: $(\frac{1}{4}v)^2 = 7.5^2 + 12.5^2 - 2x7.5x12.5\cos(90^\circ - \alpha)$	A1	cwo. Correct magnitude of speed after impulse. NB Must be speed, not velocity.
		A1	cwo. Correct direction (relative to the line given on the diagram – e.g. accept "vertically", "North", j direction, "up").
		6 M1	Use cosine rule to find $\frac{1}{4}v$. Terms must be of correct form, but
OR			accept unsimplified or slips e.g. their $\frac{1}{4} \times 30$
		A1	Correct equation
	$v = 40 \text{m s}^{-1}$	A1	cao (penultimate mark on epen)
	$\frac{12.5}{2} = \frac{7.5}{2}$	M1	Use sine rule to find angle between initial and final directions.
	$\sin \theta$ sin α	A1	Correct equation in α and θ
	$\theta = 90^{\circ}$	A1	cao. (final mark on epen)
		6	

PMT

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
6 (a)	$F = \frac{60000}{10} = 6000$	B1	Correct application of $P = Fv$ seen or implied.
	$F - 1200g\sin\alpha - 400g\sin\alpha - 1000 - 200 = 1600a$	M1 A1 A1	Use of $F = ma$ parallel to the slope for the car and trailer. Must have all the terms, but condone sign errors. At most one error (with <i>F</i> or their <i>F</i>) Correct equation (with <i>F</i> or their <i>F</i>)
	$a = 2.3 \text{ (m s}^{-2})$	A1	only
(b)	$T - 400g\sin\alpha - 200 = 400 \ge 2.3$ T = 1400	(5) M1 A1 ft A1 ft A1 (4)	Use of $F = ma$ parallel to the slope for the trailer At most one error (their <i>a</i>) All correct (their <i>a</i>) only
OR	$6000 - 1200g \sin \alpha - 1000 - T = 1200 \ge 2.3$ T = 1400	M1 A1 ft A1 ft A1	Use of $F = ma$ parallel to the slope for the car At most one error (their <i>a</i>) All correct (their <i>a</i>) only
OR (a)	F = 6000 $T - 400g \sin \alpha - 200 = 400 \text{ x a}$ $6000 - 1200g \sin \alpha - 1000 - T = 1200 \text{ x a}$	(4) B1	Simultaneous equations in T and a
	$6000 - 1600g\sin\alpha - 1200 = 1600a$	M1A1A1	Add to eliminate <i>T</i>
(b)	$a = 2.3 \text{ (m s}^{-2})$ -800a = 2T + 800g sin α + 800 - 6000 2T = 5200 - 800g sin α - 800 × 2.3 T = 1400	A1 M1A1A1 A1	Subtract and / or substitute to eliminate a

(c)		M1	Use of work-energy. Must have all three terms. Do not accept
	1		duplication of terms, but condone sign errors.
	$200d = \frac{1}{2}400.12^2 - 400gd\sin\alpha$		Equation in only one unknown, but could be vertical distance.
	2	A1	At most one error in the equation
		A1	All correct in one unknown
	$d = 60 \ (m)$	DM1	Solve for d – dependent on M for work-energy equation.
	u = 00 (m)	A1	only
			(60, 420) $(1, 2)$
		(5)	For vertical distance $\left[=\frac{1}{14}=4.29\right]$ allow 3/5
		14	
		14	

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	
7 (-)	$0^2 + 2^2 + 2 = 0.8 = 10$	M1	Complete method using <i>suvat</i> to form an equation in u_v .
7 (a)	$0 = u_V - 2 \times 9.8 \times 10$	A1	Correct equation e.g. $0 = u^2 - 20g$
	$u_V = 14 *$	A1	*Answer given* requires equation and working, including 196, seen.
		(3)	
OR	conservation of energy:	M1	Initial KE = gain in GPE + final KE
	$\frac{1}{2}m(u_h^2 + u_v^2) = mg \times 10 + \frac{1}{2}mu_h^2, \frac{1}{2}u_v^2 = 98$	A1	Correct equation
	$u_{v} = 14 *$	A1	*Answer given*
	·	(3)	
(b)		M1	Use the vertical distance travelled to find the total time taken.
	$(\uparrow), -52.5 = 14t - \frac{1}{2}gt^2$	A1	At most one error
	-	A1	Correct equation
		DI	Calca france Demonstrative Marcal
	$49t^2 - 140t - 525 = 0$	DMI	Solve for t. Dependent on the preceding M mark
	$(t-5)(49t+105) = 0 \qquad t = 5$	A1	only
	$(\rightarrow), 50 = 5u_H$	M1	Use their time of flight to form an equation in u_H
	$u_{H} = 10$	A1	only
	$u = \sqrt{10^2 + 14^2}$	M1	Use of Pythagoras with two non-zero components, or solution of a pair of simultaneous equations in u and α .
	$=\sqrt{296}$; 17.2 m s ⁻¹	A1	17.2 or 17 (method involves use of $g = 9.8$ so an exact surd answer is not acceptable)
		(9)	See next page for an alternative route to <i>u</i> , and (c).

PhysicsAndMathsTutor.com

OR	$50 = u \cos \alpha t$ or $50 = u_H t$	M1	First 3 marks for the quadratic as above. Used in their quadratic
	$49\left(\frac{50}{u_{H}}\right)^{2} - 140\left(\frac{50}{u_{H}}\right) - 525 = 0$ $525(u_{H})^{2} + 140(u_{H}) - 122500 = 0$	A1	Correct quadratic in u_H
	Solve for u_H	DM1	Dependent on the M mark for setting up the initial quadratic equation in t.
	$u_{H} = 10$	A1	only
	etc.		Complete as above.
(c)	$\tan OBA = \frac{52.5}{50} = 1.05$	B1	Correct direction o.e. (accept reciprocal)
	$v_V = 1.05 \text{ x } 10 = 10.5$	M1	Use trig. with their u_H and correct interpretation of direction to find the vertical component of speed. Working with distances is M0 (condone 10 ± 1.05)
	$(\uparrow), -10.5 = 14 - gt$	DM1	Use suvat to form an equation in t. Dependent on the preceding M.
		A1	Correct equation for their u_{H} . For incorrect direction give A0 here
	t = 2.5	A1	only
		(5)	
		17	

PMT

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA032678 Summer 2012

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

Mark Scheme (Results)

January 2013

GCE Mechanics M2 (6678/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code UA034765 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[n]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

- PMT
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
aM		•
aA	•	
bM1		•
bA1	•	
bB	•	
bM2		•
bA2		•

January 2013 6678 M2 Mark Scheme

Q.	Scheme		Marks
1. (a)	$ \begin{array}{c} A \\ 0.5m \\ 2 \text{ kg} \\ B \\ B \\ 2m \\ C \end{array} $	M1	
	$5\overline{y} = 2 \times 0.25(+0)$	A1	Moments equation with lengths ¹ / ₄ , 1 and (ratio of) masses 2, 3. Allow moments about a parallel axis Use of length for mass is M0.
	$\overline{y} = \frac{2 \times 0.25}{5} = 0.1$		For distance from <i>BC</i>
(b)	A B G		
		M1	
	$\tan\theta = \frac{0.6}{0.5 - 0.1}$	A1ft	Must suspend from A. Use of tan with 0.6 and $0.5 - \overline{y}$ Could be wrong way up. Must be using 0.6
		A1	Correct way up. ft their \overline{y} .
	$\theta = \tan^{-1}\left(\frac{6}{4}\right) = 56.3^{\circ} = 56^{\circ}$		Accept awrt 56.3

Q.	Scheme		Marks
2 (a)	$\xrightarrow{0.4 \text{ m s}^2} \longrightarrow$ $R \xleftarrow{1800 \text{ kg}} \xrightarrow{T}$	B1	
	$T = \frac{30000}{20}$ (=1500)	M1	Use of $P = Fv$
	T - R = 1800a	A1	Equation of motion. Need all 3 terms. Condone sign errors
	$T - R = 1800 \times 0.4$ R = 1500 - 1800 × 0.4 = 780	A1	Equation correct (their T) Only
(b)	$N \rightarrow 20 \text{ m s}^{-1}$ $780 \leftarrow 1$ $780 \leftarrow 1$ 1800 g	M1	
	$T - 1800g\sin\alpha - R = 0$	A1	Equation of motion. Need all 3 terms. Weight must be resolved. Condone cos for sin. Condone sign errors Correct equation. Allow with <i>R</i> not substituted or with their <i>R</i> .
	$T = 1800 \times \frac{1}{12}g + 780$	DM1	
	Power = $\left(1800 \times \frac{1}{12}g + 780\right) \times 20$	A1	Use of $P = Tv$
		A1	Correctly substituted equation (for their <i>R</i>)
	= 45000 W or 45 kW		cao

Q	Scheme		Marks	
(a)	$t = \frac{5}{4}$		M1	1.25
(b)	$\mathbf{r} = (2t^2 - 5t)\mathbf{i} + 3t\mathbf{j}(+\mathbf{c})$			Integrate the velocity vector
	$t = 0$ $2\mathbf{i} + 5\mathbf{j} = \mathbf{c}$		A1 DM1 A1	NB Also correct to use suvat with $a = 4i$ and $u = -5i + 3j$. Correct Use \mathbf{r}_0 to find <i>C</i>
	$\mathbf{r} = (2t^2 - 5t)\mathbf{i} + 3t\mathbf{j} + (2\mathbf{i} + 3t)\mathbf{j} + (2\mathbf{i} + 3t)j$	- 5 j)		oe
	$(2t^2 - 5t + 2)\mathbf{i} + (3t + 5)\mathbf{j}$		B1	
(c)	$\mathbf{r}_{\varrho} = 11\mathbf{i} + 2\mathbf{j} - 2t\mathbf{i} + ct\mathbf{j}$ $(11 - 2t)\mathbf{i} + (2 + ct)\mathbf{j}$			Correct j component of \mathbf{r}_Q Do not actually require the whole thing - can answer the O by considering only the i
				component.
	$\mathbf{r}_{P} = \left(2t^{2} - 5t + 2\right)\mathbf{i} + \left(3t + 2\right)\mathbf{i}$	$\mathbf{r}_{P} = (2t^{2} - 5t + 2)\mathbf{i} + (3t + 5)\mathbf{j}$		
	$\mathbf{r}_{\varrho} = \mathbf{r}_{P} = d\mathbf{i} + 14\mathbf{j}$		$2t^2 - 5t$	
	3t + 5 = 14	$2l^2 - 3l - 9$ (2l + 3)(l - 3) = 0	M1	Form an equation in <i>t</i> only
		t = 3		
	t = 3	A1 ft	A1	
	$2 + ct = 14 \implies c = 4$ $d = 11 2 \times 3 = 5 \qquad \text{or}$		AIft	Their t
	$d = 11 - 2 \times 5 = 5 \qquad \text{or} \\ d = 2 \times 2^2 \qquad 5 \times 3 + 2 \implies d = 5$			Their <i>t</i>
	$a = 2 \times 3 -3 \times 3 + 2 \implies a = 3$			
	Alt: $2t^2 - 5t + 2 = 11 - 2t = d \Longrightarrow t = \frac{11 - d}{2}$			
	$2\left(\frac{11-d}{2}\right)^2 - 5\left(\frac{11-d}{2}\right) + 2 = d,$			
	$d^{2} - 19d + 70 = 0 = (d - 5)(d - 14)$			

Q.	Scheme		Marks	
5	$U \text{ m s}^{-1} \qquad A \qquad 1.5 \text{ m}$			
(a)	$N = 2g\cos\theta = \frac{14}{25}g$	M1	Resolve perpendicular to plane. Condone trig confusion.	
	$F = \mu N = \frac{5}{12} \times \frac{14}{25} g = \frac{7g}{30}$	B1	Correct value of F seen or implied	
	Work done $=\frac{7}{30}g \times 1.5 = 3.43 = 3.4 \text{ J}$	DM1	Their $F \ge 1.5$	
		A1	$\frac{7g}{20}$, 3.4 or 3.43 only	
(b)	$3.43 + 2g\sin\theta \times 1.5 = \frac{1}{2} \times 2U^2$	M1	but condone sign errors & trig confusion. Must have an expression for the vertical height.	
	<i>U</i> = 5.626 = 5.6	A1 A1 A1	Correct with one slip for their WD. All correct for their WD 5.6 & 5.63 only	
(c)	$v m s^{-1}$ 1.5 m			
	$2g\sin\theta \times 1.5 = 3.43 + \frac{1}{2} \times 2v^2$	M1	Energy equation - needs all three terms. Condone sign errors & trig. confusion. Extra terms give M0.	
	$OR: \frac{1}{2} \times 2U^2 = 2 \times 3.43 + \frac{1}{2} \times 2v^2$	A1	All correct (their WD & U)	
	$v^2 = 3g\sin\theta - 3.43$ v = 4.979			
Alt	Speed = 5.0 m s^{-1}	A1	Accept 4.98	
(c)	$mg\sin\theta - F = ma$ and $v^{z} = (u^{z}) + 2as$	M1	Equation of motion - needs all three terms. Condone sign errors & trig. confusion. Together with <i>suvat</i>	
	$2g\sin\theta - \frac{7g}{30} = \frac{48g}{25} - \frac{7g}{30} = 2a$			
	$a = \frac{253g}{300} = 8.26$	A1		
	$v^{2} = 24.794$, $v = 5.0$	A1	Accept 4.98	

Q.	Scheme	Marks	
6 (a)	$2 = -2u\sin\theta + \frac{1}{2}g \times 4$	M1	Vertical distance. Condone sign errors. Must have used $t = 2$, but could be using $u_y = u \sin \theta$
	$\left(-2 = u\sin\theta t - \frac{1}{2}gt^2\right)$	A1	All correct
	$u \sin \theta = g - 1$ $2u \cos \theta = 8 (u \cos \theta = 4)$ $(u \cos \theta t = 8)$	B1	Horizontal distance. Accept $u_x = 4$ o.e.
	$\tan\theta = \frac{g-1}{4} = 2.2$	M1	Divide to obtain expression for tan b
		A1	Given answer It is acceptable to quote and use the equation for the projectile path. Incorrect equation is 0/5.
(b)	$u\cos\theta = 4$	M1	Use the horizontal distance and θ to find <i>u</i> 9.67 or 9.7
	$u = \frac{4}{\cos \theta} = 9.66 = 9.7$	A1	NB θ = 65.6° leading to 9.68 is an accuracy penalty.
	OR use components from (a) and Pythagoras.		
(c)	$6 = (1 - g)T + \frac{1}{2} \times 9.8T^2$	M1	Equation for vertical distance $= \pm 6$ to give a quadratic in <i>T</i> . Allow their u_y
	$4.9T^2 - 8.8T - 6 = 0$		
	$T = \frac{8.8 \pm \sqrt{\lfloor (-)8.8 \rfloor + 24 \times 4.9}}{9.8}$	DM1	Solve a 3 term quadratic
	T = 2.323 = 2.32 or 2.3	A1	2.3 or 2.32 only
(d)	$v^2 = 8.8^2 + 2g \times 6$ or $v = -8.8 + gT$	M1 A1	Use <i>suvat</i> to find vertical speed Correct equation their $u_{\rm c}$ T
	<i>v</i> = 13.96		Confect equation then wy, 1
	Horiz speed $= 4$		
	$\tan \alpha = \frac{v}{4}$	DM1	Correct trig. with their vertical speed to find the required angle.
		A1	Correct equation
	$\alpha = 74.01 = 74^{\circ}$	Al	14° or 14.0° . Allow 106.
	Alternative:		
	$\frac{1}{2}m(9.6664)^2 + 6mg = \frac{1}{2}mv^2$	M1	Conservation of energy to find speed
	v = 14.52719	A1	
	$\cos \alpha = \frac{4}{145}$	DM1 A1	Correct method for α
	$\alpha = 74.01 = 74^{\circ}$	A1	Allow 106
		•	

Q	Scheme	Marks		
7(a)	$A \stackrel{u}{\longrightarrow} B \stackrel{0}{\longrightarrow} B$ $m 3m$ $v \longleftarrow W$		If the signs on their diagram and in their working are inconsistent, ignore the diagram. Penalise inconsistency between the two equations in the second accuracy mark.	
	mu = -mv + 3mw	M1	CLM. Allow for v in either direction. Needs all 3 terms. Condone sign errors.	
	u = -v + 3w	A1	<i>v</i> in either direction. Ignore diagram if equations "correct" but inconsistent with diagram	
	eu = w + v	M1	Impact law. Must be the right way round, but condone sign errors	
		A1	Correct equation. Signs consistent with CLM equn.	
	$w = \frac{u}{4} (1 + e)$	DM1	Solve for <i>v</i> or <i>w</i> .	
		A1	One correct	
	$v = -w + eu = \frac{u}{4}(3e - 1)$	A1	Both correct. $1 - 3e \rightarrow A0$ for v	
(b)	$ \xrightarrow{u}_{4}(1+e) \xrightarrow{0} 0 $ $B \qquad 0 $ $B \qquad C $ $3m \qquad 4m $ $Y \qquad \rightarrow X $ $3mw = 4mX - 3mY $ $2ew = X + Y $ $7Y = W(8e - 3) $ $Q = 2 \qquad (1+e) \qquad \frac{3u}{2}(1+e) = 7Y $	M1 A1ft B1ft DM1	If the signs on their diagram and in their working are inconsistent, ignore the diagram. Penalise inconsistency between the two equations in the B mark. CLM for their w . Correct unsimplified (their w) Impact law. Must be the right way up. Their w Solve for (7) Y	
(c)	Or $2ue(1+e) - \frac{1}{4}(1+e) = 7Y$ $\rightarrow e > \frac{3}{8}$ $Y > 0 \rightarrow \frac{3}{8} < e \le \frac{1}{2}$ $\frac{u}{28}(1+e)(8e-3) > \frac{u}{4}(3e-1)$ $2e^2 - 4e + 1 > 0$ $e = \frac{4 \pm \sqrt{16-8}}{4} = 1.707, 0.293$ $2e^2 - 4e + 1 < 0$ for $\frac{3}{8} < e \le \frac{1}{2}$ so no second	A1 A1 M1 DM1 A1	NB No longer ft. Condone <. For a second collision their <i>Y</i> > their <i>v</i> Obtain the critical values Compare 0.293 (o.e.) with $\frac{3}{8}$ to reach correct	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA034765 January 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Mechanics 2 (6678/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA036424 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.
General Rules for Marking Mechanics

• Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.

- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.

• Omission of units or incorrect units is not (usually) counted as an accuracy error.

- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *ONCE* per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme	Mai	ks	Notes
1.				
(a)	$F - 150 - 300 = 1500 \ge 0.2$	M1		Needs total mass and both resistances. Condone sign errors
		A1		Correct unsimplified equation
	F = 750	A1		
	$P = 750 \ge 20 = 15000 \text{ watts}$	M1		Independent M. 20 x their driving force
		A1		
			(5)	
(b)	Use their mass as a guide to which of these two alternative	s is bei	ng use	ed.
	For caravan: $T - 150 = 600 \ge 0.2$	M1		Requires all forces acting on caravan. Condone sign error(s)
	T = 270 N	A1	(2)	
Or (b)	For car: $F - T - 300 = 900 \ge 0.2$	M1		Requires all forces acting on car. Condone sign error(s)
	T = 270 N	A1	(2)	
			[7]	

Question Number	Scheme	Marks	Notes
2.	NB This question tells candidates to use work-energy - su	vat approach	scores 0/6
	$1.24 \times 8; 0.2g \times 8; \frac{1}{2}0.2.20^2 \text{ or } \frac{1}{2}0.2.v^2$	B1;B1;B1	B1 for each term seen or implied 9.92, 15.68, 40 or $0.1v^2$
	$1.24 \times 8 = \frac{1}{2}0.2.20^2 - \frac{1}{2}0.2.v^2 - 0.2g \times 8$	M1	Condone sign errors but all terms should be present
		A1	Correct equation
	<i>v</i> = 12	A1	
		(6)	
		[6]	

PMT

Question Number	Scheme	Marks	Notes
3.			
(a)	$\frac{1}{2}t^2 - 3t + 4 = 0$	M1	Set $v = 0$
	$t^2 - 6t + 8 = 0$		
	(t-2)(t-4) = 0	DM1	Solve for <i>v</i>
	t = 2 s or 4 s	A1 A1	
		(4)	
(b)	$\int \frac{1}{2}t^2 - 3t + 4dt$	M1	Integration – majority of powers increasing
	$=\frac{1}{6}t^{3}-\frac{3}{2}t^{2}+4t(+C)$	A1	Correct (+ <i>C</i> not required)
	$s = \int_{0}^{2} \frac{1}{2}t^{2} - 3t + 4 \mathrm{d}t - \int_{2}^{4} \frac{1}{2}t^{2} - 3t + 4 \mathrm{d}t$	DM1	Correct strategy for finging the required distance. Follow their "2". Subtraction/swap limits/modulus signs
	$= \left[\frac{1}{6}t^{3} - \frac{3}{2}t^{2} + 4t\right]_{0}^{2} - \left[\frac{1}{6}t^{3} - \frac{3}{2}t^{2} + 4t\right]_{2}^{4}$		
	$= \frac{8}{6} - 6 + 8 - (\frac{64}{6} - 24 + 16 - (\frac{8}{6} - 6 + 8))$	A1	Correct unsimplified
	$=\frac{10}{3} - \frac{8}{3} + \frac{10}{3}$		
	= 4	A1	
		(5)	
		[9]	

Question Number	Scheme	Marks	Notes
4.			
(a)	$AC = 4a \tan 60^\circ = 4a\sqrt{3}.$	M1 A1	Or $\frac{4a}{\tan 30}$ or $\sqrt{(8a)^2 - (4a)^2}$
		(2)	
(b)	use of $F = \mu R$ at either A or C	M1	
	3 independent equations required. Award M1A1 for each marks for the best 3.	in the order s	een. If more than 3 relevant equations seen, award the
	$M(A), \qquad R_c.4a\sqrt{3} = W.3a\sqrt{3}\cos 60^\circ$	M1 A1	$R_{c} = \frac{3W}{8}$
	$(\uparrow), \qquad R_A + R_C \cos 60^\circ + F_C \cos 30^\circ = W$	M1 A1	$R_A = \frac{5W}{8}$
	$(\rightarrow), \qquad F_A - R_C \cos 30^\circ + F_C \cos 60^\circ = 0$	M1 A1	$F_A = R_C \frac{\sqrt{3}}{3}$
	M(C) $a\sqrt{3}\cos 60W + F_A \cdot 4a\sqrt{3}\sin 60 = R_A \cdot 4a\sqrt{3}\cos 60$		
	Parallel: $F_A \cos 60 + R_A \cos 30 + F_C = W \cos 30$		
	Perpendicular: $R_C + R_A \cos 60 = F_A \cos 30 + W \cos 60$		
	solving to give $\mu = \frac{\sqrt{3}}{5}$; 0.346 or 0.35.	DM1	Equation in μ only. Dependent on 4 M marks for their equations.
	3	A1	
	Reactions in the wrong direction(s) – check carefully	I	1
		(9)	
		[11]	

Question Number	Scheme	Marks	Notes
5. (a)	$2mu = 2mv_p + mv_Q$	M1	CLM. Needs all 3 terms of corrwct form but condone sign slips
		A1	Correct equation
	$\frac{3}{4}mu^2 = \frac{1}{2}2mv_P^2 + \frac{1}{2}mv_Q^2$	M1	KE after impact. 3 terms of correct form
		A1	Correct equation
	$3v_Q^2 - 4uv_Q + u^2 = 0$ or $12v_P^2 - 16uv_P + 5u^2 = 0$	M1	Use CLM equation to form quadratic in v_P or v_Q
		A1	Correct equation
	$v_Q = \frac{u}{3}, v_P = \frac{5u}{6}$ or $v_Q = u, v_P = \frac{u}{2}$	DM1	Solve for a value of v_Q . Dependent on the previous M1.
		A1	A v_Q, v_P pair correct or two correct values for v_Q
	$v_{Q} = u$	DM1	Select solution from a choice of two.
	۶		Dependent on all 4 M marks.
	$\dots Since v_Q > v_P$	A1	Correct justification
		(10)	
(b)	$e = \frac{u - \frac{u}{2}}{u} \qquad \qquad \left(\frac{v_Q - v_P}{u}\right)$	M1	Impact law. Must be used correctly. Condone $\pm e$ Follow their speeds from (a).
		A1 ft	Correct for their speeds
	$=\frac{1}{2}$	A1	
		(3)	
		[13]	

Question Number	Scheme	Marks	Notes
6. (a)	ABC ADE BCED		
	$M \qquad \frac{4M}{9} \qquad \frac{5M}{9}$	B1	Correct mass ratios
	$\frac{h}{3} \qquad \qquad (\frac{h}{3} + \frac{1}{3}\frac{2h}{3}) \qquad \qquad \overline{y}$	B1	Correct distance ratios
		M1	Moments equation. Condone sign slip
	$M\frac{h}{3} - \frac{4M}{9} \frac{5h}{9} = \frac{5M}{9}\overline{y}$	A1	
	$\overline{y} = \frac{7h}{45}$ *Answer Given*	A1 (5)	
(b)		M1	Moments equation for the folded shape. Requires correct mass ratios, and terms of correct structure.
	$\frac{5M}{9}\frac{7h}{45} + \frac{4M}{9}\left(\frac{h}{3} - \frac{1}{3} \times \frac{2h}{3}\right) = M \ \overline{x}$	A1 A1	-1 each error $\frac{h}{9}$
	$\overline{x} = \frac{11h}{81}$	A1 (4)	
(c)	$\tan \alpha = \frac{\frac{h}{3} - \overline{x}}{2}$	M1	Use of tan in correct triangle. Allow reciprocal.
(-)	$\frac{2a}{3}$	A1 ft	Correct unsimplified for their x
	$=\frac{8h}{27}$	DM1	Substitute and simplify
	21a	AI	
		(4)	
		[13]	

Question Number	Scheme	Marks	Notes
7. (a)	$(\rightarrow)\sqrt{27ag}\cos\theta. t = 9a$	M1	Horizontal motion. Condone trig confusion.
		A1	
	$(\uparrow)\sqrt{27ag}\sin\theta.\ t - \frac{1}{2}gt^2 = 6a$	M1	Vertical motion. Condone sign errors and trig confusion.
		A1	
	$(\uparrow)\sqrt{27ag}\sin\theta. \ \frac{9a}{\sqrt{27ag}\cos\theta} - \frac{1}{2}g\left(\frac{9a}{\sqrt{27ag}\cos\theta}\right)^2 = 6a$	DM1	Substitute for <i>t</i> (unsimplified). Dependent on both previous M marks
	$9a \tan \theta - \frac{1}{2}g.81a^2 \frac{(1 + \tan^2 \theta)}{27ag} = 6a$	DM1	Express all trig terms in terms of tan. Dependent on preceding M.
	$\tan^2\theta - 6\tan\theta + 5 = 0$	A1 (7)	
(b)	$\tan^2\theta - 6\tan\theta + 5 = 0$		
	$(\tan\theta - 1)(\tan\theta - 5) = 0$	M1	Method to find one root of the quadratic
	$\tan \theta_2 = 1$ or $\tan \theta_1 = 5$	A1 A1 (3)	
	$t = \frac{9a}{\sqrt{27}} = \frac{9a}{\sqrt{27}} \times \frac{\sqrt{26}}{1}$	M1	Use $\tan \theta = \text{their 5 to find t.}$
(C)	$\sqrt{2}/ag\cos\theta$ $\sqrt{2}/ag$ 1	A1ft	Correct unsimplified. Correct $\cos \theta$ for their $\tan \theta$
	$81a^2.26$ $78a$	A1	Given answer \rightarrow evidence of working is required
	$=\sqrt{\frac{27a}{27a}} = \sqrt{\frac{3}{g}}$ *Answer given*	(3)	

Question Number	Scheme	Marks		Notes
Question 7 c	ontinued			
(d)	$\frac{1}{2}m(27ag-v^2) = mg6a$	M1 A1		Conservation of energy. Requires all 3 terms. Condone sign error Correct equation
	$v = \sqrt{15ag}$	A1	(3)	
Or (d)	$v^{2} = \left(\sqrt{27ag}\cos\theta\right)^{2} + \left(\sqrt{27ag}\sin\theta - g.\sqrt{\frac{78a}{g}}\right)^{2}$	M1		Horizontal and vertical components and Pythagoras. Condone trig confusion.
	$= \left(\frac{27ag}{26}\right) + \left(5\sqrt{\frac{27ag}{26}} - \sqrt{78ag}\right)^2 \left(=ag\left(\frac{27}{26} + \frac{363}{26}\right)\right)$	A1		Correctly substituted
	$v = \sqrt{15ag}$	A1	(3)	
			[16]	

PMT

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA036424 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Mechanics 2 (6678/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2013 Publications Code UA036421 All the material in this publication is copyright © Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PhysicsAndMathsTutor.com EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Rules for Marking Mechanics

• Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.

- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.

• Omission of units or incorrect units is not (usually) counted as an accuracy error.

- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *ONCE* per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme	Marks	Notes
1.	Use of $\mathbf{I} = \mathbf{mv} \cdot \mathbf{mu}$ $2\mathbf{v} = (3\mathbf{i} + 6\mathbf{j}) + 2(\mathbf{i} - 4\mathbf{j})$ $\mathbf{v} = 2.5\mathbf{i} - \mathbf{j}$ Speed = $\sqrt{2.5^2 + 1^2} = \sqrt{7.25} (= 2.69 \text{ (m s}^{-1}))$	M1 A1 A1 M1 A1 [5]	Must be subtracting. Condone subtraction in the wrong order Correct unsimplified equation (= $5i - 2j$) Use of correct Pythagoras with their v Exact form or 2s.f. or better. Watch out for fortuitous answers from $2.5i + j$.

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
2a	Work done = $15\mu R = 15 \times 0.4 \times 3g \cos 20^\circ$	M1 M1	$F_{\text{max}} = \mu \times 3g \cos 20 \ (11.05). \ R \ \text{must}$ be resolved but condone trig confusion. $15 \times \text{their} \ F_{\text{max}}.$ Independent M $15 \times \ F_{\text{max}} + \dots$ is M0
	$= 18g\cos 20 = 166 (J)$	A1 [3]	or 170 (J)
2b	Energy: WD against F + GPE + final KE = initial KE		Must include all four correct terms (including resolving). Condone sign errors and trig confusion. Any sign errors in the KE terms count as a single error. Follow their WD
	their WD + 3g sin 20°×15 + $\frac{1}{2}$ 3v ² = $\frac{1}{2}$ 3×20 ² v = 13.7 (m s ⁻¹)	M1A2ft A1 [4]	-1ee Follow their WD or 14
Or 2b	$3a = -0.4 \times 3g \cos 20 + 3g \sin 20$ and use of $v^2 = u^2 + 2as$	M1	Complete method. Their F_{max} +component of weight
		A1ft	A correct equation with their F_{max} . Allow for $a = +7.03$ acting down the slope a = -7.035
	$v^{2} = 20^{2} + 2 \times a \times 15 (= 188.93)$ $v = 13.7 (m s^{-1})$	A1ft A1 [4]	Correct equation for their a or 14 (m s ⁻¹)

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
3 a	$v = 0 = 2t^2 - 14t + 20$	M1	Set $v = 0$
	=2 t-2 t-5	M1	Solve for <i>t</i>
	t = 2 or $t = 5$	A1	
		[3]	
	There are many different approaches to part (b). The allocation	on of the two	o M marks is
	M1: A method to find the time when the velocity is a minimu M1: Evaluate the speed at that time	m	
h	t = 0 $y = 20$ (m s ⁻¹)	B1	
e.g. d	t = 0, $V - 20$ (III S)		
	a = 4t - 14 = 0	M1	
	$t = \frac{7}{2}, v = 2 \times \frac{3}{2} \times \frac{-3}{2} = \frac{-9}{2}$	M1A1	Must see ± 4.5
			Clearly stated & correct conclusion
	Max speed = 20 ms^{-1}	A1	Depends on the two M marks. From
		[3]	correct solution only.
balt1	$t = 0, v = 20 \text{ (m s}^{-1})$	B1	
	Sketch with symmetry about their $t = 3.5$	MI M1	Evaluate v at min
	-4.5	Al	Correct work
	Max speed = 20 ms^{-1}	Δ 1	Clearly stated & correct conclusion.
		[5]	Depends on the two M marks. From correct
	(-0, -1)		solution only.
b alt 2	t = 0, $v = 20$ (m s)	BI	
	Justification of minimum or tabulate sufficient values to	M1	
		1411	
	Evaluate v at min.	M1	
	Correct work	A1	
	Correct conclusion. Depends on the two M marks	A1	Clearly stated & from correct solution only.
		[5]	

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
b alt 3	t = 0, $v = 20$ (m s ⁻¹)	B1	
	Complete the square as far as $\left(t - \frac{7}{2}\right)^2$	M1	
	$2\left(t-\frac{7}{2}\right)^2-\frac{9}{2}$	M1A1	
	Max speed = 20 ms^{-1}	A1 [5]	Clearly stated & correct conclusion. Depends on the two M marks. From correct solution only.
с	$\int 2t^2 - 14t + 20 \mathrm{d}t = \frac{2}{3}t^3 - 7t^2 + 20t(+C)$	M1 A1	Integration. Need to see majority of powers going up All correct. Condone <i>C</i> missing
	Distance = $\left[\frac{2}{3}t^3 - 7t^2 + 20t\right]_0^2 - \left[\frac{2}{3}t^3 - 7t^2 + 20t\right]_2^4$	M1 A1	Correct method to find the distance, for their 2 Correct unsimplified
	$= 2 \times \left[\frac{2}{3}t^{3} - 7t^{2} + 20t\right]^{2} - \left[\frac{2}{3}t^{3} - 7t^{2} + 20t\right]_{4}$. 1	
	$= 2\left\lfloor \frac{10}{3} - 7 \times 4 + 40 \right\rfloor - \left\lfloor \frac{2 \times 64}{3} - 7 \times 16 + 80 \right\rfloor = 24 \text{ (m)}$	AI [5]	

Question Number	Scheme	Marks	Notes
4 a	$ \begin{array}{c} $		For a valid division into basic elements: e.g. pair of rhombuses
	AOCBOCDEwhole112 $1/2$ $1/2$ \overline{y}	B1 B1	Correct mass ratios for parts and the arrow shape Correct vertical distances from a horizontal axis
	$2\overline{y} = 1 \times \frac{1}{2} + 1 \times \frac{1}{2}$	M1 A1 A1	Moments equation about a horizontal axis Correct equation for their axis
	y = 0.5 (m)	[5]	
a alt 2	AOBOBCDDOEwhole1214010 \overline{y}	B1 B1	Rhombus + two triangles
	$4\overline{y} = 2 \times 1$	M1A1	Moments equation
	$\bar{y} = 0.5 \text{ (m)}$	A1 [5]	

Question Number	Scheme	Marks	Notes
a alt 3	Hexagon $AOEF$ whole6240-1 \overline{y}	B1 B1	Hexagon – rhombus
	$4\overline{y} = 02 \times 1$	M1A1	
	$\overline{y} = 0.5 \text{ (m)}$	A1 [5]	
a alt 4	$h = \text{height of each triangle} = \sqrt{3}$		4 triangles
	Distances of c of m from horizontal through O		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B1 B1	
	$4\overline{y} = 2 \times 1 \times \frac{2\sqrt{3}}{3} \cos 30 \left(= \frac{4\sqrt{3}}{3} \times \frac{\sqrt{3}}{2} = 2 \right)$	M1A1	
	$\overline{y} = 0.5 \text{ (m)}$	A1 [5]	

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
	In 4(b) the first two marks are M1: Indentify a triangle, with one angle correct, and attempt to find the lengths of two sides A1ft: 2 sides correct, follow their answer to (a) DM1: Work sufficient to be able to go on to find the required angle. Dependent on the preceding M1 A1ft: follow their answer to (a) DM1: Find the required angle. Dependent on the preceding M1 A1 Correct answer for example		
4b			
	$2\cos 30 = \sqrt{3} , "0.5"+2\sin 30 = 1.5$ $\tan \theta = \frac{\text{their } 1.5}{\text{their } \sqrt{3}}$ Required angle = $\theta - 30 = \tan^{-1} \frac{1.5}{\sqrt{3}} - 30 = 40.89 30 = 10.9^{\circ}$	M1A1ft DM1 A1ft DM1 A1 [6]	Their 0.5 & their $\sqrt{3}$ Use of tan in a right angled triangle. Accept the reciprocal Correct for their angle. Ft their 0.5 Correct strategy to find required angle e.g. " θ "-30° or 90°-30°-" θ " Accept 11°, 10.9° or better

Question Number	Scheme	Marks	Notes
4balt	E C C C D		
	SAS in a relevant triangle $d^{2} = 2^{2} + 0.5^{2} - 2 \times 2 \times 0.5 \cos 120 = 5.25$ $\frac{\sin \theta}{0.5} = \frac{\sin 120}{\sqrt{5.25}}$ $\theta = 10.9^{\circ}$	M1A1ft DM1 A1ft DM1 A1 [6]	Their 0.5 Correct cosine rule. Correct equation. Their 0.5

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
5a	F C mg mg H		
	Moments about A:	M1	Moments about A. Requires all three terms and terms of correct structure (force x distance). Condone consistent trig confusion
	$bF = a\cos\theta mg + 2a\cos\theta mg (= 3a\cos\theta mg)$	A2	-1 each error
	$F = \frac{3amg\cos\theta}{b} \text{*Answer given*}$	A1 [4]	
5b	$\rightarrow: H = F\sin\theta = \frac{3amg\cos\theta\sin\theta}{b}$	M1 A1	Resolve horizontally. Condone trig confusion RHS correct. Or equivalent.
	$\uparrow: 2mg = \pm V + F\cos\theta$	M1 A1	Resolve vertically. Condone sign error and trig confusion Correct equation
	$\pm V = 2mg - \frac{3amg\cos\theta}{b} \times \cos\theta \left(= 2mg - \frac{3amg\cos^2\theta}{b} \right)$	A1 [5]	RHS correct. Or equivalent

Question Number	Scheme	Marks	Notes
5c	$2mg - \frac{3amg\cos^2\theta}{h}$	M1	Use of tan, either way up. V. H. F
	$\frac{\frac{b}{3amg\cos\theta\sin\theta}}{\frac{b}{b}} = \tan\theta$	A1	substituted. Correct for their components in θ only
	$\frac{2b - 3a\cos^2\theta}{3a\cos\theta\sin\theta} = \frac{\sin\theta}{\cos\theta}$	DM1	Simplify to obtain the ratio of a and b, or equivalent
	$\Rightarrow 2b - 3a\cos^2\theta = 3a\sin^2\theta \Rightarrow 2b = 3a, \ \frac{a}{b} = \frac{2}{3}$	A1 [4]	
5c alt 2	The centre of mass of the combined rod + particle is $\frac{3}{2}a$ from A	M1A1	
	F R 2mg		
	3 forces in equilibrium must be concurrent $\Rightarrow b = \frac{3}{2}a$	M1	Not on the spec, but you might see it.
	$\Rightarrow \frac{a}{b} = \frac{2}{3}$	A1 [4]	
	<i>R</i> acts along the rod, so resolve forces perpendicular to the rod. $F = mg \cos\theta + mg \cos\theta$	M1	Resolve and substitute for <i>F</i>
alt c 3	$2mg\cos\theta = \frac{3amg\cos\theta}{b}$	A1	
		DM1	Eliminate θ
	$\Rightarrow \frac{a}{b} = \frac{2}{3}$	A1 [4]	

PMT

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks	Notes
	R acts along the rod. Take moments about C		Moments about <i>B</i> gives
alt c 4	$mg\cos\theta \ 2a-b = mg\cos\theta \ b-a$	M1 A1	$2a-b$ $F = amg \cos \theta$ and substitute for F
	$2a-b=b-a$, $\Rightarrow \frac{a}{b}=\frac{2}{3}$	DM1A1	
		[4]	
a al 4 5	Resultant parallel to the rod $\Rightarrow R = 2mg\sin\theta$	M (1	Substitute for V , H and R in terms of θ
c alt 5	And $V^2 + H^2 = R^2$	1111	
	$2mg\sin\theta^{2} = \left(\frac{3amg\cos\theta\sin\theta}{b}\right)^{2} + \left(2mg - \frac{3amg\cos^{2}\theta}{b}\right)^{2}$	A1	
	Eliminate θ	DM1	
	$\rightarrow \frac{a}{2}$	A1	
	$\frac{b}{b}$ - 3	[4]	

Question Number	Scheme	Marks	Notes
6a	Conservation of energy:	M1	Energy equation must contain the correct terms, but condone sign error.
	$\frac{1}{2}mu^{2} + mg \times 8 = \frac{1}{2}m 2u^{2}$ $mu^{2} + 16mg = 4mu^{2}$	A2 -1ee	Correct unsimplified
	$16mg = 3mu^2, u = \sqrt{\frac{16g}{3}}$	DM1	Solve for <i>u</i>
	<i>u</i> = 7.2	A1 [5]	Accept 7.23. Accept $\sqrt{\frac{16g}{3}}$
6b	Vertical distance: $-8 = u \sin \theta \times 2 - \frac{g}{2} \times 4$	M1	Condone sign errors or trig error. <i>u</i> must be resolved.
	2	A2 -1ee	Correct equation for their <i>u</i> .
	$\sin\theta = \frac{2g-8}{2u} = 0.802$		
	$\theta = 53.3^{\circ}$	A1 [4]	or 53°
6c	Min speed at max height, i.e. $u\cos\theta$	M1	Condone consistent trig confusion with part (b)
	$= 4.3 \text{ (m s}^{-1})$	A1 [2]	or $4.32 (\text{ms}^{-1})$

Question Number	Scheme	Marks	Notes
7a	CLM: $2mu = 2mv + 3mw$	M1	All three terms required, but condone sign errors
		A1	
	Impact: $w - v = eu$	M1	Condone sign error, but must be subtracting and <i>e</i>
		A 1	must be used correctly.
	Swhat is an and the Day and Day for Day	AI DM1	Penalise inconsistent signs here. Solve for w Requires the two preceding M marks
	Subst $v = w - eu$: $2u = 2 w - eu + 3w = 5w - 2eu$		Solve for w. Requires the two preceding witharks
	$w = \frac{2}{5} 1 + e u$ *Answer Given*	Al	
	υ υ	(6)	
7h	7	D1	Soon or implied by correct speeds
70	$W = \frac{7u}{10}$	DI	Seen, or implied by correct speeds.
	10	M1A1	Both needed
	CLM: $3mw = 3mx + 4my$ and Impact: $y - x = \frac{5w}{4}$	1011711	
	Subst: $3w - 3r + 4\left(r + \frac{3}{2}w\right)$	DM1	Solve for x or y . Dependent on the preceding M
	Subst. $5w = 5x + 4\begin{pmatrix} x + w \\ 4 \end{pmatrix}$		mark
	x=0,	A1	
	$v = \frac{3}{2}w = \frac{21}{2}u$	A 1	0.5254
		AI	
		(6)	
7c	u u	B1	Correct velocity of P
	$v \equiv -\frac{1}{20}$		
	Speed of separation = $\frac{u}{1} + \frac{21u}{2} = \frac{23u}{2}$	M1	Correct use of their values and substitute for <i>e</i> .
	20 40 40	A 1	Check directions carefully
		AI (3)	0. <i>3 3u</i>
		[15]	
		[]	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA036421 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

